Loading…

High-mobility bottom-contact n-channel organic transistors and their use in complementary ring oscillators

The electrical characteristics of bottom-contact organic field-effect transistors fabricated with the air-stable n-type semiconductor N,N′-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2) are described. The mobility, threshold voltage, subthreshold swing, and Ion∕Ioff ratio(VDS=40...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2006-02, Vol.88 (8)
Main Authors: Yoo, Byungwook, Jung, Taeho, Basu, Debarshi, Dodabalapur, Ananth, Jones, Brooks A., Facchetti, Antonio, Wasielewski, Michael R., Marks, Tobin J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrical characteristics of bottom-contact organic field-effect transistors fabricated with the air-stable n-type semiconductor N,N′-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2) are described. The mobility, threshold voltage, subthreshold swing, and Ion∕Ioff ratio(VDS=40V, VG=0∼40V) are 0.14cm2∕Vs, 1.6V, 2.0V/decade, and 1.2×103, respectively. The effect of electrode/dielectric surface treatment on these devices is also examined, with a combination of 1-octadecanethiol and hexamethyldisilazane. Organic complementary five-stage ring oscillators were fabricated using pentacene and PDI-8CN2, and operated at an oscillation frequency of 34kHz and a propagation delay per stage of 3μs.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2177627