Loading…
Nanoscale morphology and photoemission of arsenic implanted germanium films
Germanium films of 140 nm thickness deposited onto Si substrate were implanted with 70 keV arsenic ions with a dose of 2.5 × 10 14 cm − 2 . The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen...
Saved in:
Published in: | Journal of applied physics 2006-04, Vol.99 (8), p.084304-084304-5 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Germanium films of
140
nm
thickness deposited onto Si substrate were implanted with
70
keV
arsenic ions with a dose of
2.5
×
10
14
cm
−
2
. The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen and carbon impurities and their distribution in the implanted layer were detected by secondary-ion-mass spectroscopy and nuclear reaction analysis using the
O
16
(
He
4
,
He
4
)
O
16
reaction. The depth dependence of the valence band density of states was investigated by measuring the energy distribution curve of photoelectrons using Ar ion etching for profiling. The morphology of As implanted film was dominated by nanosized
(
10
-
100
nm
)
Ge islands separated by empty bubbles at a depth of
20
-
50
nm
under the surface. At depth ranges of 0-20 and 70 to a measured depth of
140
nm
, however, morphology of the as-evaporated Ge film was not modified. At a depth of
20
-
50
nm
, photoelectron spectra were similar to those obtained for Ge amorphized with heavy ion (Sb) implantation [implantation induced (I.I.)
a
-
Ge
]. The depth profile of the morphology and the photoemission data indicate correlation between the morphology and valence band density of states of the ion I.I.
a
-
Ge
. As this regime was formed deep in the evaporated film, i.e., isolated from the environment, any contamination, etc., effect can be excluded. The depth distribution of this I.I.
a
-
Ge
layer shows that the atomic displacement process cannot account for its formation. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.2190717 |