Loading…
A nonlinear theory of dust voids in cylindrical geometry with the convective effect
A time-dependent, self-consistent nonlinear model with the convective term for the void formation in dusty plasmas is given. Furthermore, the cylindrical configuration is applied instead of the Cartesian system, considering the device geometry in experiments. The nonlinear evolution of the dust void...
Saved in:
Published in: | Physics of plasmas 2006-06, Vol.13 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A time-dependent, self-consistent nonlinear model with the convective term for the void formation in dusty plasmas is given. Furthermore, the cylindrical configuration is applied instead of the Cartesian system, considering the device geometry in experiments. The nonlinear evolution of the dust void is then investigated numerically. It is shown that, similar to the slab model, the ion drag plays a crucial role in the evolution of the void. However, the effect of the convective term slows down the void formation process and the void size obtained in the cylindrical coordinate is larger than that obtained in the Cartesian coordinates. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.2209929 |