Loading…

Design of Cu8Zr5-based bulk metallic glasses

Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu–Zr binary system,...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2006-06, Vol.88 (24)
Main Authors: Yang, L., Xia, J. H., Wang, Q., Dong, C., Chen, L. Y., Ou, X., Liu, J. F., Jiang, J. Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J. R., Gerward, L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu–Zr binary system, where we have demonstrated the existence of Cu8Zr5 icosahedral clusters in Cu61.8Zr38.2, Cu64Zr36, and Cu64.5Zr35.5 amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by doping the basic Cu–Zr alloy with a minority element. This hypothesis was confirmed in systems (Cu0.618Zr0.382)100−xNbx, where x=1.5 and 2.5at.%, and (Cu0.618Zr0.382)98Sn2. The present results may open a route to prepare amorphous alloys with improved glass forming ability.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2213020