Loading…

Accurate computational determination of the binding energy of the SO3∙H2O complex

Reliable thermochemical data for the reaction SO3+H2O⇔SO3∙H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3∙H2O complex. The electronic bindi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2006-08, Vol.125 (5)
Main Authors: Fliegl, Heike, Glöß, Andreas, Welz, Oliver, Olzmann, Matthias, Klopper, Wim
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013
cites cdi_FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013
container_end_page
container_issue 5
container_start_page
container_title The Journal of chemical physics
container_volume 125
creator Fliegl, Heike
Glöß, Andreas
Welz, Oliver
Olzmann, Matthias
Klopper, Wim
description Reliable thermochemical data for the reaction SO3+H2O⇔SO3∙H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3∙H2O complex. The electronic binding energy is accurately computed to De=40.9±1.0kJ∕mol=9.8±0.2kcal∕mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0=−ΔH1a0(0K)=7.7±0.5kcal∕mol and ΔH1a0(298K)=−8.3±1.0kcal∕mol.
doi_str_mv 10.1063/1.2234372
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2234372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2234372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013</originalsourceid><addsrcrecordid>eNo1kEtOwzAURS0EEqEwYAeeMkh5z5-4HlYVUKRKGbTzyLVfSlA-lZNKdAdsge2xEkIpg6urcwdncBm7R5giZPIRp0JIJY24YAnCzKYms3DJEgCBqc0gu2Y3ff8OAGiESth67v0huoG475r9YXBD1bWu5oEGik3Vnph3JR_eiG-rNlTtjlNLcXf8X9e5_P78Wor8pKjp45Zdla7u6e7cE7Z5ftoslukqf3ldzFepN0qkJY1lQEittKcxAbczEyxagyVlhsBJI8Erq4XWIAlG1JIMKRECoJywhz-tj13fRyqLfawaF48FQvF7RoHF-Qz5A6jAUQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate computational determination of the binding energy of the SO3∙H2O complex</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Fliegl, Heike ; Glöß, Andreas ; Welz, Oliver ; Olzmann, Matthias ; Klopper, Wim</creator><creatorcontrib>Fliegl, Heike ; Glöß, Andreas ; Welz, Oliver ; Olzmann, Matthias ; Klopper, Wim</creatorcontrib><description>Reliable thermochemical data for the reaction SO3+H2O⇔SO3∙H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3∙H2O complex. The electronic binding energy is accurately computed to De=40.9±1.0kJ∕mol=9.8±0.2kcal∕mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0=−ΔH1a0(0K)=7.7±0.5kcal∕mol and ΔH1a0(298K)=−8.3±1.0kcal∕mol.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2234372</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2006-08, Vol.125 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013</citedby><cites>FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,778,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Glöß, Andreas</creatorcontrib><creatorcontrib>Welz, Oliver</creatorcontrib><creatorcontrib>Olzmann, Matthias</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><title>Accurate computational determination of the binding energy of the SO3∙H2O complex</title><title>The Journal of chemical physics</title><description>Reliable thermochemical data for the reaction SO3+H2O⇔SO3∙H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3∙H2O complex. The electronic binding energy is accurately computed to De=40.9±1.0kJ∕mol=9.8±0.2kcal∕mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0=−ΔH1a0(0K)=7.7±0.5kcal∕mol and ΔH1a0(298K)=−8.3±1.0kcal∕mol.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo1kEtOwzAURS0EEqEwYAeeMkh5z5-4HlYVUKRKGbTzyLVfSlA-lZNKdAdsge2xEkIpg6urcwdncBm7R5giZPIRp0JIJY24YAnCzKYms3DJEgCBqc0gu2Y3ff8OAGiESth67v0huoG475r9YXBD1bWu5oEGik3Vnph3JR_eiG-rNlTtjlNLcXf8X9e5_P78Wor8pKjp45Zdla7u6e7cE7Z5ftoslukqf3ldzFepN0qkJY1lQEittKcxAbczEyxagyVlhsBJI8Erq4XWIAlG1JIMKRECoJywhz-tj13fRyqLfawaF48FQvF7RoHF-Qz5A6jAUQY</recordid><startdate>20060807</startdate><enddate>20060807</enddate><creator>Fliegl, Heike</creator><creator>Glöß, Andreas</creator><creator>Welz, Oliver</creator><creator>Olzmann, Matthias</creator><creator>Klopper, Wim</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060807</creationdate><title>Accurate computational determination of the binding energy of the SO3∙H2O complex</title><author>Fliegl, Heike ; Glöß, Andreas ; Welz, Oliver ; Olzmann, Matthias ; Klopper, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fliegl, Heike</creatorcontrib><creatorcontrib>Glöß, Andreas</creatorcontrib><creatorcontrib>Welz, Oliver</creatorcontrib><creatorcontrib>Olzmann, Matthias</creatorcontrib><creatorcontrib>Klopper, Wim</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fliegl, Heike</au><au>Glöß, Andreas</au><au>Welz, Oliver</au><au>Olzmann, Matthias</au><au>Klopper, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computational determination of the binding energy of the SO3∙H2O complex</atitle><jtitle>The Journal of chemical physics</jtitle><date>2006-08-07</date><risdate>2006</risdate><volume>125</volume><issue>5</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Reliable thermochemical data for the reaction SO3+H2O⇔SO3∙H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3∙H2O complex. The electronic binding energy is accurately computed to De=40.9±1.0kJ∕mol=9.8±0.2kcal∕mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0=−ΔH1a0(0K)=7.7±0.5kcal∕mol and ΔH1a0(298K)=−8.3±1.0kcal∕mol.</abstract><doi>10.1063/1.2234372</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2006-08, Vol.125 (5)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_2234372
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Accurate computational determination of the binding energy of the SO3∙H2O complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computational%20determination%20of%20the%20binding%20energy%20of%20the%20SO3%E2%88%99H2O%20complex&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Fliegl,%20Heike&rft.date=2006-08-07&rft.volume=125&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.2234372&rft_dat=%3Ccrossref%3E10_1063_1_2234372%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c742-fec747023545ce45cd1b87d91971fe67e0a3730c49525503e037353e7e42dd013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true