Loading…

Sol-gel-derived double-layered nanocrystal memory

The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate an...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2006-12, Vol.89 (25), p.252111-252111-3
Main Authors: Ko, Fu-Hsiang, You, Hsin-Chiang, Lei, Tan-Fu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3
cites cdi_FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3
container_end_page 252111-3
container_issue 25
container_start_page 252111
container_title Applied physics letters
container_volume 89
creator Ko, Fu-Hsiang
You, Hsin-Chiang
Lei, Tan-Fu
description The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900 ° C for 1 min . When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior V th shifting because of the higher probability for trapping the charge carrier.
doi_str_mv 10.1063/1.2416248
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2416248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3</originalsourceid><addsrcrecordid>eNp1z09LxDAQh-EgCtbVg99grx6yZjpNk14EWfwHCx7Uc0jSiVTSVpIq9NvbZffqafjBy8DD2DWIDYgab2FTVlCXlT5hBQilOALoU1YIIZDXjYRzdpHz1zJliVgweBsj_6TIW0rdL7XrdvxxkXi0M6VlDnYYfZrzZOO6p35M8yU7CzZmujreFft4fHjfPvPd69PL9n7HPUoxcVfLqpGopfPBAzbCK-Wc1pWSyjWVIHKA6CRIrxwFTcK21gcbHOmGoMUVuzn89WnMOVEw36nrbZoNCLO3GjBH69LeHdrsu8lO3Tj8Hy9gs4DNEWz2YPwDzLNcJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sol-gel-derived double-layered nanocrystal memory</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Ko, Fu-Hsiang ; You, Hsin-Chiang ; Lei, Tan-Fu</creator><creatorcontrib>Ko, Fu-Hsiang ; You, Hsin-Chiang ; Lei, Tan-Fu</creatorcontrib><description>The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900 ° C for 1 min . When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior V th shifting because of the higher probability for trapping the charge carrier.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2416248</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2006-12, Vol.89 (25), p.252111-252111-3</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3</citedby><cites>FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2416248$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Ko, Fu-Hsiang</creatorcontrib><creatorcontrib>You, Hsin-Chiang</creatorcontrib><creatorcontrib>Lei, Tan-Fu</creatorcontrib><title>Sol-gel-derived double-layered nanocrystal memory</title><title>Applied physics letters</title><description>The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900 ° C for 1 min . When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior V th shifting because of the higher probability for trapping the charge carrier.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1z09LxDAQh-EgCtbVg99grx6yZjpNk14EWfwHCx7Uc0jSiVTSVpIq9NvbZffqafjBy8DD2DWIDYgab2FTVlCXlT5hBQilOALoU1YIIZDXjYRzdpHz1zJliVgweBsj_6TIW0rdL7XrdvxxkXi0M6VlDnYYfZrzZOO6p35M8yU7CzZmujreFft4fHjfPvPd69PL9n7HPUoxcVfLqpGopfPBAzbCK-Wc1pWSyjWVIHKA6CRIrxwFTcK21gcbHOmGoMUVuzn89WnMOVEw36nrbZoNCLO3GjBH69LeHdrsu8lO3Tj8Hy9gs4DNEWz2YPwDzLNcJQ</recordid><startdate>20061218</startdate><enddate>20061218</enddate><creator>Ko, Fu-Hsiang</creator><creator>You, Hsin-Chiang</creator><creator>Lei, Tan-Fu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20061218</creationdate><title>Sol-gel-derived double-layered nanocrystal memory</title><author>Ko, Fu-Hsiang ; You, Hsin-Chiang ; Lei, Tan-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Fu-Hsiang</creatorcontrib><creatorcontrib>You, Hsin-Chiang</creatorcontrib><creatorcontrib>Lei, Tan-Fu</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Fu-Hsiang</au><au>You, Hsin-Chiang</au><au>Lei, Tan-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sol-gel-derived double-layered nanocrystal memory</atitle><jtitle>Applied physics letters</jtitle><date>2006-12-18</date><risdate>2006</risdate><volume>89</volume><issue>25</issue><spage>252111</spage><epage>252111-3</epage><pages>252111-252111-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900 ° C for 1 min . When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior V th shifting because of the higher probability for trapping the charge carrier.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2416248</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2006-12, Vol.89 (25), p.252111-252111-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2416248
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
title Sol-gel-derived double-layered nanocrystal memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sol-gel-derived%20double-layered%20nanocrystal%20memory&rft.jtitle=Applied%20physics%20letters&rft.au=Ko,%20Fu-Hsiang&rft.date=2006-12-18&rft.volume=89&rft.issue=25&rft.spage=252111&rft.epage=252111-3&rft.pages=252111-252111-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2416248&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-b65495385bcfc1390c77bb884757b940eeb133b515c7bef8e0adacfafbe89e1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true