Loading…
High-frequency electrical properties of individual and bundled carbon nanotubes
Bundles of single wall carbon nanotubes have been proposed as an interconnect that could potentially replace copper in state-of-the-art ultralarge-scale-integrated circuits if theoretically predicted inductance, resistance, and capacitance scale with the number of carbon nanotubes within the bundle....
Saved in:
Published in: | Applied physics letters 2007-02, Vol.90 (6) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bundles of single wall carbon nanotubes have been proposed as an interconnect that could potentially replace copper in state-of-the-art ultralarge-scale-integrated circuits if theoretically predicted inductance, resistance, and capacitance scale with the number of carbon nanotubes within the bundle. The authors report direct measurement of the kinetic inductance of individual single wall carbon nanotubes and measurement of the high-frequency impedance of bundles showing that the bundle inductance scales with the number of individual carbon nanotubes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2437724 |