Loading…

Photoacoustic characterization of carbon nanotube array thermal interfaces

This work describes an experimental study of thermal conductance across multiwalled carbon nanotube (CNT) array interfaces, one sided (Si-CNT-Ag) and two sided (Si-CNT-CNT-Cu), using a photoacoustic technique (PA). Well-anchored, dense, and vertically oriented multiwalled CNT arrays have been direct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2007-03, Vol.101 (5)
Main Authors: Cola, Baratunde A., Xu, Jun, Cheng, Changrui, Xu, Xianfan, Fisher, Timothy S., Hu, Hanping
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work describes an experimental study of thermal conductance across multiwalled carbon nanotube (CNT) array interfaces, one sided (Si-CNT-Ag) and two sided (Si-CNT-CNT-Cu), using a photoacoustic technique (PA). Well-anchored, dense, and vertically oriented multiwalled CNT arrays have been directly synthesized on Si wafers and pure Cu sheets using plasma-enhanced chemical vapor deposition. With the PA technique, the small interface resistances of the highly conductive CNT interfaces can be measured with accuracy and precision. In addition, the PA technique can resolve the one-sided CNT interface component resistances (Si-CNT and CNT-Ag) and the two-sided CNT interface component resistances (Si-CNT, CNT-CNT, and CNT-Cu) and can estimate the thermal diffusivity of the CNT layers. The thermal contact resistances of the one- and two-sided CNT interfaces measured using the PA technique are 15.8±0.9 and 4.0±0.4mm2K∕W, respectively, at moderate pressure. These results compare favorably with those obtained using a steady state, one-dimensional reference bar method; however, the uncertainty range is much narrower. The one-sided CNT thermal interface resistance is dominated by the resistance between the free CNT array tips and their opposing substrate (CNT-Ag), which is measured to be 14.0±0.9mm2K∕W. The two-sided CNT thermal interface resistance is dominated by the resistance between the free tips of the mating CNT arrays (CNT-CNT), which is estimated to be 2.1±0.4mm2K∕W.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.2510998