Loading…

Core structures of the a -edge dislocation in InN

Stillinger-Weber potential parameters were optimized for InN by fitting to the bulk material properties and point defect energy in order to calculate the core structure of the a -edge dislocation. The initial displacement field is imposed in the perfect crystal according to isotropic linear elastici...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2007-03, Vol.90 (11), p.111901-111901-3
Main Authors: Lei, H. P., Ruterana, P., Nouet, G., Jiang, X. Y., Chen, J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3
cites cdi_FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3
container_end_page 111901-3
container_issue 11
container_start_page 111901
container_title Applied physics letters
container_volume 90
creator Lei, H. P.
Ruterana, P.
Nouet, G.
Jiang, X. Y.
Chen, J.
description Stillinger-Weber potential parameters were optimized for InN by fitting to the bulk material properties and point defect energy in order to calculate the core structure of the a -edge dislocation. The initial displacement field is imposed in the perfect crystal according to isotropic linear elasticity theory, and then the system is relaxed to the minimum energy. The different origins of the displacement field generate three cores with four, eight or five/seven atoms. The calculated energies indicate that the four-atom core structure is the most stable for InN.
doi_str_mv 10.1063/1.2712799
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2712799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3</originalsourceid><addsrcrecordid>eNp1j01LAzEQhoMouFYP_oNcPaRmdrpJ9iLI4keh6EXPIZud6EptJEkP_nu3tuDJ0zAzDy_vw9glyDlIhdcwrzXUum2PWAVSa4EA5phVUkoUqm3glJ3l_DGtTY1YMehiIp5L2vqyTZR5DLy8E3dc0PBGfBjzOnpXxrjh44YvN0_n7CS4daaLw5yx1_u7l-5RrJ4flt3tSnhsZBE1uIWWyhsCBDTOOeoH70zAoXfke22m-0Jp09aNNGpAP30UNb0ypELwOGNX-1yfYs6Jgv1K46dL3xak3blasAfXib3Zs9mP5bfs__BO2P4J2xhswR_DEVsN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Core structures of the a -edge dislocation in InN</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Lei, H. P. ; Ruterana, P. ; Nouet, G. ; Jiang, X. Y. ; Chen, J.</creator><creatorcontrib>Lei, H. P. ; Ruterana, P. ; Nouet, G. ; Jiang, X. Y. ; Chen, J.</creatorcontrib><description>Stillinger-Weber potential parameters were optimized for InN by fitting to the bulk material properties and point defect energy in order to calculate the core structure of the a -edge dislocation. The initial displacement field is imposed in the perfect crystal according to isotropic linear elasticity theory, and then the system is relaxed to the minimum energy. The different origins of the displacement field generate three cores with four, eight or five/seven atoms. The calculated energies indicate that the four-atom core structure is the most stable for InN.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2712799</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2007-03, Vol.90 (11), p.111901-111901-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3</citedby><cites>FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2712799$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76125</link.rule.ids></links><search><creatorcontrib>Lei, H. P.</creatorcontrib><creatorcontrib>Ruterana, P.</creatorcontrib><creatorcontrib>Nouet, G.</creatorcontrib><creatorcontrib>Jiang, X. Y.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><title>Core structures of the a -edge dislocation in InN</title><title>Applied physics letters</title><description>Stillinger-Weber potential parameters were optimized for InN by fitting to the bulk material properties and point defect energy in order to calculate the core structure of the a -edge dislocation. The initial displacement field is imposed in the perfect crystal according to isotropic linear elasticity theory, and then the system is relaxed to the minimum energy. The different origins of the displacement field generate three cores with four, eight or five/seven atoms. The calculated energies indicate that the four-atom core structure is the most stable for InN.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1j01LAzEQhoMouFYP_oNcPaRmdrpJ9iLI4keh6EXPIZud6EptJEkP_nu3tuDJ0zAzDy_vw9glyDlIhdcwrzXUum2PWAVSa4EA5phVUkoUqm3glJ3l_DGtTY1YMehiIp5L2vqyTZR5DLy8E3dc0PBGfBjzOnpXxrjh44YvN0_n7CS4daaLw5yx1_u7l-5RrJ4flt3tSnhsZBE1uIWWyhsCBDTOOeoH70zAoXfke22m-0Jp09aNNGpAP30UNb0ypELwOGNX-1yfYs6Jgv1K46dL3xak3blasAfXib3Zs9mP5bfs__BO2P4J2xhswR_DEVsN</recordid><startdate>20070312</startdate><enddate>20070312</enddate><creator>Lei, H. P.</creator><creator>Ruterana, P.</creator><creator>Nouet, G.</creator><creator>Jiang, X. Y.</creator><creator>Chen, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070312</creationdate><title>Core structures of the a -edge dislocation in InN</title><author>Lei, H. P. ; Ruterana, P. ; Nouet, G. ; Jiang, X. Y. ; Chen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, H. P.</creatorcontrib><creatorcontrib>Ruterana, P.</creatorcontrib><creatorcontrib>Nouet, G.</creatorcontrib><creatorcontrib>Jiang, X. Y.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, H. P.</au><au>Ruterana, P.</au><au>Nouet, G.</au><au>Jiang, X. Y.</au><au>Chen, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core structures of the a -edge dislocation in InN</atitle><jtitle>Applied physics letters</jtitle><date>2007-03-12</date><risdate>2007</risdate><volume>90</volume><issue>11</issue><spage>111901</spage><epage>111901-3</epage><pages>111901-111901-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Stillinger-Weber potential parameters were optimized for InN by fitting to the bulk material properties and point defect energy in order to calculate the core structure of the a -edge dislocation. The initial displacement field is imposed in the perfect crystal according to isotropic linear elasticity theory, and then the system is relaxed to the minimum energy. The different origins of the displacement field generate three cores with four, eight or five/seven atoms. The calculated energies indicate that the four-atom core structure is the most stable for InN.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2712799</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2007-03, Vol.90 (11), p.111901-111901-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2712799
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
title Core structures of the a -edge dislocation in InN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%20structures%20of%20the%20a%20-edge%20dislocation%20in%20InN&rft.jtitle=Applied%20physics%20letters&rft.au=Lei,%20H.%20P.&rft.date=2007-03-12&rft.volume=90&rft.issue=11&rft.spage=111901&rft.epage=111901-3&rft.pages=111901-111901-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2712799&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-21a4706c8e13138aaaebdca8f3dbaecb781314678925086d3cf3d6e5b68e6ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true