Loading…

Reduced magnetization in magnetic oxide nanoparticles

Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization M S . The M S value dec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2007-05, Vol.101 (9), p.09M516-09M516-3
Main Authors: Kim, T., Shima, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313
cites cdi_FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313
container_end_page 09M516-3
container_issue 9
container_start_page 09M516
container_title Journal of applied physics
container_volume 101
creator Kim, T.
Shima, M.
description Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization M S . The M S value decreases and approaches zero with decreasing particle size. Yttrium iron garnet (YIG) nanoparticles also show a similar trend. The magnetization of nanoparticles estimated using the Langevin function with the particle size distribution indicates that the reduced magnetization can be consistently explained by the existence of a spin-disordered surface layer with the thickness of 1 - 2 nm . The results found in magnetite and YIG nanoparticles suggest that the reduced magnetization can be commonly observed among magnetic oxide nanoparticles due to the existence of spin disordered surface layer.
doi_str_mv 10.1063/1.2712825
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2712825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313</originalsourceid><addsrcrecordid>eNp1z0tLw0AUhuFBFIzVhf8gWxep58x9NoIUrUJBEF0Pc4uMtEnJRFB_vdVGcOPqwMfLgYeQc4Q5gmSXOKcKqabigFQI2jRKCDgkFQDFRhtljslJKa8AiJqZiojHFN9CivXGvXRpzJ9uzH1X5-53CHX_nmOqO9f1WzfshnUqp-SodeuSzqY7I8-3N0-Lu2b1sLxfXK-awASMDXcxUiZDEpIH02opTQCkkWojvfecai4BufEigmKqdVLwaFqvotdMMmQzcrH_G4a-lCG1djvkjRs-LIL99lq0k3fXXu3bEvL4o_g_ntD2L5p9ASZkXIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduced magnetization in magnetic oxide nanoparticles</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kim, T. ; Shima, M.</creator><creatorcontrib>Kim, T. ; Shima, M.</creatorcontrib><description>Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization M S . The M S value decreases and approaches zero with decreasing particle size. Yttrium iron garnet (YIG) nanoparticles also show a similar trend. The magnetization of nanoparticles estimated using the Langevin function with the particle size distribution indicates that the reduced magnetization can be consistently explained by the existence of a spin-disordered surface layer with the thickness of 1 - 2 nm . The results found in magnetite and YIG nanoparticles suggest that the reduced magnetization can be commonly observed among magnetic oxide nanoparticles due to the existence of spin disordered surface layer.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2712825</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2007-05, Vol.101 (9), p.09M516-09M516-3</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313</citedby><cites>FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, T.</creatorcontrib><creatorcontrib>Shima, M.</creatorcontrib><title>Reduced magnetization in magnetic oxide nanoparticles</title><title>Journal of applied physics</title><description>Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization M S . The M S value decreases and approaches zero with decreasing particle size. Yttrium iron garnet (YIG) nanoparticles also show a similar trend. The magnetization of nanoparticles estimated using the Langevin function with the particle size distribution indicates that the reduced magnetization can be consistently explained by the existence of a spin-disordered surface layer with the thickness of 1 - 2 nm . The results found in magnetite and YIG nanoparticles suggest that the reduced magnetization can be commonly observed among magnetic oxide nanoparticles due to the existence of spin disordered surface layer.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1z0tLw0AUhuFBFIzVhf8gWxep58x9NoIUrUJBEF0Pc4uMtEnJRFB_vdVGcOPqwMfLgYeQc4Q5gmSXOKcKqabigFQI2jRKCDgkFQDFRhtljslJKa8AiJqZiojHFN9CivXGvXRpzJ9uzH1X5-53CHX_nmOqO9f1WzfshnUqp-SodeuSzqY7I8-3N0-Lu2b1sLxfXK-awASMDXcxUiZDEpIH02opTQCkkWojvfecai4BufEigmKqdVLwaFqvotdMMmQzcrH_G4a-lCG1djvkjRs-LIL99lq0k3fXXu3bEvL4o_g_ntD2L5p9ASZkXIo</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Kim, T.</creator><creator>Shima, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070501</creationdate><title>Reduced magnetization in magnetic oxide nanoparticles</title><author>Kim, T. ; Shima, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, T.</creatorcontrib><creatorcontrib>Shima, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, T.</au><au>Shima, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced magnetization in magnetic oxide nanoparticles</atitle><jtitle>Journal of applied physics</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>101</volume><issue>9</issue><spage>09M516</spage><epage>09M516-3</epage><pages>09M516-09M516-3</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Magnetic oxide nanoparticles have been studied to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles. Magnetite nanoparticles synthesized by coprecipitation show superparamagnetism at room temperature with reduced saturation magnetization M S . The M S value decreases and approaches zero with decreasing particle size. Yttrium iron garnet (YIG) nanoparticles also show a similar trend. The magnetization of nanoparticles estimated using the Langevin function with the particle size distribution indicates that the reduced magnetization can be consistently explained by the existence of a spin-disordered surface layer with the thickness of 1 - 2 nm . The results found in magnetite and YIG nanoparticles suggest that the reduced magnetization can be commonly observed among magnetic oxide nanoparticles due to the existence of spin disordered surface layer.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2712825</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2007-05, Vol.101 (9), p.09M516-09M516-3
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_2712825
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Reduced magnetization in magnetic oxide nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20magnetization%20in%20magnetic%20oxide%20nanoparticles&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20T.&rft.date=2007-05-01&rft.volume=101&rft.issue=9&rft.spage=09M516&rft.epage=09M516-3&rft.pages=09M516-09M516-3&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.2712825&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-4add236ce564c9f8669c012d2896bbb428460149b5d0737fa654d9fb7db836313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true