Loading…
Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system
Piezoelectric actuators convert electrical into mechanical energy and are implemented for many large-scale applications such as piezoinjectors and ink jet printers. The performance of these devices is governed by the electric-field-induced strain. Here, the authors describe the development of a clas...
Saved in:
Published in: | Applied physics letters 2007-09, Vol.91 (11) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Piezoelectric actuators convert electrical into mechanical energy and are implemented for many large-scale applications such as piezoinjectors and ink jet printers. The performance of these devices is governed by the electric-field-induced strain. Here, the authors describe the development of a class of lead-free (0.94−x)Bi0.5Na0.5TiO3–0.06BaTiO3–xK0.5Na0.5NbO3 ceramics. These can deliver a giant strain (0.45%) under both unipolar and bipolar field loadings, which is even higher than the strain obtained with established ferroelectric Pb(Zr,Ti)O3 ceramics and is comparable to strains obtained in Pb-based antiferroelectrics. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2783200 |