Loading…

Finite element method calculations of ZnO nanowires for nanogenerators

The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ± 0.3 V . This relatively high signal is, however, di...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2008-03, Vol.92 (12), p.122904-122904-3
Main Authors: Schubert, M. A., Senz, S., Alexe, M., Hesse, D., Gösele, U.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3
cites cdi_FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3
container_end_page 122904-3
container_issue 12
container_start_page 122904
container_title Applied physics letters
container_volume 92
creator Schubert, M. A.
Senz, S.
Alexe, M.
Hesse, D.
Gösele, U.
description The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ± 0.3 V . This relatively high signal is, however, difficult to measure due to the low capacitance of the ZnO nanowire ( ∼ 4 × 10 − 5 pF ) as compared to the capacitance of most preamplifiers ( ∼ 5 pF ) . A further problem arises from the semiconducting properties of experimentally fabricated ZnO nanowires which causes the disappearance of the voltage signal within picoseconds.
doi_str_mv 10.1063/1.2903114
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2903114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoWEcX_kG2LjrmNU2abAQZ7CgMzEY3bkJIXrXSSSSJiH_v2Jmtq_suHB7cQ8g1sCUwyW9h2WjGAdoTUgHrunp_q1NSMcZ4LbWAc3KR88e-iobzivT9GMaCFCfcYSh0h-U9eurs5L4mW8YYMo0DfQ1bGmyI32PCTIeY5vaGAZMtMeVLcjbYKePVMRfkpX94Xj3Wm-36aXW_qV2j2lK3SqLymmuJAryEQaEH2Q1S-ZZ1wEWrrRcolW4546hRMwFKWOll4xrm-YLcHP66FHNOOJjPNO5s-jHAzJ8AA-YoYM_eHdjsxjJP-R8-WDBHC2a2wH8BKWRiLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite element method calculations of ZnO nanowires for nanogenerators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Schubert, M. A. ; Senz, S. ; Alexe, M. ; Hesse, D. ; Gösele, U.</creator><creatorcontrib>Schubert, M. A. ; Senz, S. ; Alexe, M. ; Hesse, D. ; Gösele, U.</creatorcontrib><description>The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ± 0.3 V . This relatively high signal is, however, difficult to measure due to the low capacitance of the ZnO nanowire ( ∼ 4 × 10 − 5 pF ) as compared to the capacitance of most preamplifiers ( ∼ 5 pF ) . A further problem arises from the semiconducting properties of experimentally fabricated ZnO nanowires which causes the disappearance of the voltage signal within picoseconds.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2903114</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2008-03, Vol.92 (12), p.122904-122904-3</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3</citedby><cites>FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2903114$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27922,27923,76153</link.rule.ids></links><search><creatorcontrib>Schubert, M. A.</creatorcontrib><creatorcontrib>Senz, S.</creatorcontrib><creatorcontrib>Alexe, M.</creatorcontrib><creatorcontrib>Hesse, D.</creatorcontrib><creatorcontrib>Gösele, U.</creatorcontrib><title>Finite element method calculations of ZnO nanowires for nanogenerators</title><title>Applied physics letters</title><description>The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ± 0.3 V . This relatively high signal is, however, difficult to measure due to the low capacitance of the ZnO nanowire ( ∼ 4 × 10 − 5 pF ) as compared to the capacitance of most preamplifiers ( ∼ 5 pF ) . A further problem arises from the semiconducting properties of experimentally fabricated ZnO nanowires which causes the disappearance of the voltage signal within picoseconds.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoWEcX_kG2LjrmNU2abAQZ7CgMzEY3bkJIXrXSSSSJiH_v2Jmtq_suHB7cQ8g1sCUwyW9h2WjGAdoTUgHrunp_q1NSMcZ4LbWAc3KR88e-iobzivT9GMaCFCfcYSh0h-U9eurs5L4mW8YYMo0DfQ1bGmyI32PCTIeY5vaGAZMtMeVLcjbYKePVMRfkpX94Xj3Wm-36aXW_qV2j2lK3SqLymmuJAryEQaEH2Q1S-ZZ1wEWrrRcolW4546hRMwFKWOll4xrm-YLcHP66FHNOOJjPNO5s-jHAzJ8AA-YoYM_eHdjsxjJP-R8-WDBHC2a2wH8BKWRiLg</recordid><startdate>20080324</startdate><enddate>20080324</enddate><creator>Schubert, M. A.</creator><creator>Senz, S.</creator><creator>Alexe, M.</creator><creator>Hesse, D.</creator><creator>Gösele, U.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080324</creationdate><title>Finite element method calculations of ZnO nanowires for nanogenerators</title><author>Schubert, M. A. ; Senz, S. ; Alexe, M. ; Hesse, D. ; Gösele, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schubert, M. A.</creatorcontrib><creatorcontrib>Senz, S.</creatorcontrib><creatorcontrib>Alexe, M.</creatorcontrib><creatorcontrib>Hesse, D.</creatorcontrib><creatorcontrib>Gösele, U.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schubert, M. A.</au><au>Senz, S.</au><au>Alexe, M.</au><au>Hesse, D.</au><au>Gösele, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element method calculations of ZnO nanowires for nanogenerators</atitle><jtitle>Applied physics letters</jtitle><date>2008-03-24</date><risdate>2008</risdate><volume>92</volume><issue>12</issue><spage>122904</spage><epage>122904-3</epage><pages>122904-122904-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ± 0.3 V . This relatively high signal is, however, difficult to measure due to the low capacitance of the ZnO nanowire ( ∼ 4 × 10 − 5 pF ) as compared to the capacitance of most preamplifiers ( ∼ 5 pF ) . A further problem arises from the semiconducting properties of experimentally fabricated ZnO nanowires which causes the disappearance of the voltage signal within picoseconds.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2903114</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2008-03, Vol.92 (12), p.122904-122904-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2903114
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
title Finite element method calculations of ZnO nanowires for nanogenerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20method%20calculations%20of%20ZnO%20nanowires%20for%20nanogenerators&rft.jtitle=Applied%20physics%20letters&rft.au=Schubert,%20M.%20A.&rft.date=2008-03-24&rft.volume=92&rft.issue=12&rft.spage=122904&rft.epage=122904-3&rft.pages=122904-122904-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2903114&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-486e8d9396e51d61f8ed167f68d40713549ad5e6894303e9e905185a6d62c20d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true