Loading…
Stretched-exponential photoionization of the metastable defects in gallium doped Cd0.99Mn0.01Te: Statistical origins of the short-time power-law in response data
The subject of the present study is the low temperature nonexponential transients of photoconductivity build-up in gallium doped Cd0.99Mn0.01Te semiconducting mixed crystals possessing metastable defects, so called DX centers. The phototransients were analyzed in terms of two approaches. The first o...
Saved in:
Published in: | Journal of applied physics 2008-06, Vol.103 (11) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The subject of the present study is the low temperature nonexponential transients of photoconductivity build-up in gallium doped Cd0.99Mn0.01Te semiconducting mixed crystals possessing metastable defects, so called DX centers. The phototransients were analyzed in terms of two approaches. The first one was the two-exponential fitting that is usually applied to explain the persistent photoeffect build-up in materials with DX centers. The second, implemented in the above-mentioned semiconductors, was the stochastic model of relaxation leading to the stretched-exponential result. The latter fitting was found to be more appropriate for it justifies the short-time power-law exhibited by the phototransient response. According to the stochastic approach this behavior results from a heavy-tailed distribution of photoionized DX centers. The distribution can have its origin in different local arrangements. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.2936984 |