Loading…
High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron
TM 330 -like higher order mode was excited in a multibeam reflex klystron oscillator employing a hybrid photonic-band-gap (PBG) cavity using a three-dimensional particle-in-cell simulation. One side of a conventional metal cavity was replaced with a dielectric photonic crystal lattice to form a hybr...
Saved in:
Published in: | Applied physics letters 2008-11, Vol.93 (21), p.211104-211104-3 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TM
330
-like higher order mode was excited in a multibeam reflex klystron oscillator employing a hybrid photonic-band-gap (PBG) cavity using a three-dimensional particle-in-cell simulation. One side of a conventional metal cavity was replaced with a dielectric photonic crystal lattice to form a hybrid PBG resonator that uses lattice band-gap effects resulting in a more uniform field of a higher order mode as well as the exclusion of some conventional-cavity-type modes, thereby reducing mode competition. Simulated reflex klystron in the hybrid PBG cavity produced an output power much higher than could be delivered in a conventional metal cavity. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3037026 |