Loading…
High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes
Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have m...
Saved in:
Published in: | Applied physics letters 2009-01, Vol.94 (4) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have much larger spontaneous emission than a conventional InGaN/GaN QW structure. This can be explained by the fact that a staggered QW structure has much larger matrix element than a conventional QW structure because a spatial separation between electron and hole wave functions is substantially reduced with the inclusion of a staggered InGaN layer. A staggered QW structure shows that the peak position at a high carrier density (530 nm) is similar to that at a noninjection level. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3075853 |