Loading…

High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes

Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have m...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2009-01, Vol.94 (4)
Main Authors: Park, Seoung-Hwan, Ahn, Doyeol, Kim, Jong-Wook
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3
cites cdi_FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 94
creator Park, Seoung-Hwan
Ahn, Doyeol
Kim, Jong-Wook
description Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have much larger spontaneous emission than a conventional InGaN/GaN QW structure. This can be explained by the fact that a staggered QW structure has much larger matrix element than a conventional QW structure because a spatial separation between electron and hole wave functions is substantially reduced with the inclusion of a staggered InGaN layer. A staggered QW structure shows that the peak position at a high carrier density (530 nm) is similar to that at a noninjection level.
doi_str_mv 10.1063/1.3075853
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3075853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_3075853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3</originalsourceid><addsrcrecordid>eNotUM1OwzAYixBIlMGBN8iVQ7ak2ZefI5pgmzTBAThXafKlBLUdNJ3Q3p6i7WBbPtiyTMi94HPBlVyIueQaDMgLUgiuNZNCmEtScM4lUxbENbnJ-WuyUEpZkLdNaj4Zxph8wt4faR5d0-CAgYLktO_otl-7l8WJJ9Cfg-vHQ8d-sW1pO6VHhl0ax9Q3NKR9wHxLrqJrM96ddUY-np_eVxu2e11vV4875ksLI1PG1NwiXy6D0QGmsdKK4LjwVki0UWiIWoMqIzjlJShTGwiAVtUlYI1yRh5OvX7Y5zxgrL6H1LnhWAle_b9Rier8hvwDaIRP0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Park, Seoung-Hwan ; Ahn, Doyeol ; Kim, Jong-Wook</creator><creatorcontrib>Park, Seoung-Hwan ; Ahn, Doyeol ; Kim, Jong-Wook</creatorcontrib><description>Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have much larger spontaneous emission than a conventional InGaN/GaN QW structure. This can be explained by the fact that a staggered QW structure has much larger matrix element than a conventional QW structure because a spatial separation between electron and hole wave functions is substantially reduced with the inclusion of a staggered InGaN layer. A staggered QW structure shows that the peak position at a high carrier density (530 nm) is similar to that at a noninjection level.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3075853</identifier><language>eng</language><ispartof>Applied physics letters, 2009-01, Vol.94 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3</citedby><cites>FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,779,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Park, Seoung-Hwan</creatorcontrib><creatorcontrib>Ahn, Doyeol</creatorcontrib><creatorcontrib>Kim, Jong-Wook</creatorcontrib><title>High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes</title><title>Applied physics letters</title><description>Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have much larger spontaneous emission than a conventional InGaN/GaN QW structure. This can be explained by the fact that a staggered QW structure has much larger matrix element than a conventional QW structure because a spatial separation between electron and hole wave functions is substantially reduced with the inclusion of a staggered InGaN layer. A staggered QW structure shows that the peak position at a high carrier density (530 nm) is similar to that at a noninjection level.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotUM1OwzAYixBIlMGBN8iVQ7ak2ZefI5pgmzTBAThXafKlBLUdNJ3Q3p6i7WBbPtiyTMi94HPBlVyIueQaDMgLUgiuNZNCmEtScM4lUxbENbnJ-WuyUEpZkLdNaj4Zxph8wt4faR5d0-CAgYLktO_otl-7l8WJJ9Cfg-vHQ8d-sW1pO6VHhl0ax9Q3NKR9wHxLrqJrM96ddUY-np_eVxu2e11vV4875ksLI1PG1NwiXy6D0QGmsdKK4LjwVki0UWiIWoMqIzjlJShTGwiAVtUlYI1yRh5OvX7Y5zxgrL6H1LnhWAle_b9Rier8hvwDaIRP0w</recordid><startdate>20090126</startdate><enddate>20090126</enddate><creator>Park, Seoung-Hwan</creator><creator>Ahn, Doyeol</creator><creator>Kim, Jong-Wook</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090126</creationdate><title>High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes</title><author>Park, Seoung-Hwan ; Ahn, Doyeol ; Kim, Jong-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seoung-Hwan</creatorcontrib><creatorcontrib>Ahn, Doyeol</creatorcontrib><creatorcontrib>Kim, Jong-Wook</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seoung-Hwan</au><au>Ahn, Doyeol</au><au>Kim, Jong-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes</atitle><jtitle>Applied physics letters</jtitle><date>2009-01-26</date><risdate>2009</risdate><volume>94</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Optical properties of staggered 530 nm InGaN/InGaN/GaN quantum-well (QW) light-emitting-diodes are investigated using the multiband effective mass theory. These results are compared with those of conventional 530 nm InGaN/GaN QW structures. A staggered InGaN/InGaN/GaN QW structure is shown to have much larger spontaneous emission than a conventional InGaN/GaN QW structure. This can be explained by the fact that a staggered QW structure has much larger matrix element than a conventional QW structure because a spatial separation between electron and hole wave functions is substantially reduced with the inclusion of a staggered InGaN layer. A staggered QW structure shows that the peak position at a high carrier density (530 nm) is similar to that at a noninjection level.</abstract><doi>10.1063/1.3075853</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2009-01, Vol.94 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3075853
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20staggered%20530%20nm%20InGaN/InGaN/GaN%20quantum-well%20light-emitting%20diodes&rft.jtitle=Applied%20physics%20letters&rft.au=Park,%20Seoung-Hwan&rft.date=2009-01-26&rft.volume=94&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.3075853&rft_dat=%3Ccrossref%3E10_1063_1_3075853%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-688b09e044d87d5077391da01c913e9f175f77562f5a6c3568b85d5e96b25ebe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true