Loading…

Nonmalleable encryption of quantum information

We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d ): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a sch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2009-04, Vol.50 (4), p.042106-042106-8
Main Authors: Ambainis, Andris, Bouda, Jan, Winter, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3
cites cdi_FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3
container_end_page 042106-8
container_issue 4
container_start_page 042106
container_title Journal of mathematical physics
container_volume 50
creator Ambainis, Andris
Bouda, Jan
Winter, Andreas
description We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d ): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a unitary 2-design [Dankert, et al. , e-print arXiv:quant-ph/0606161 ], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of ( d 2 − 1 ) 2 + 1 on the number of unitaries in a 2-design [Gross, et al. , J. Math. Phys. 48, 052104 (2007)], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with ≤ d 5 elements, we show that there are always approximate 2-designs with O ( ϵ − 2 d 4   log   d ) elements.
doi_str_mv 10.1063/1.3094756
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3094756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703420711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oMgeFBI3dnNx-YiSPELil70vEz2A1KSbLubCP33pjaoIPU0MDzvM8xLyDnQGdCM38CM0yLJ0-yATICKIs6zVBySCaWMxSwR4pichLCkFEAkyYTMXlzbYF0bLGsTmVb5zaqrXBs5G617bLu-iarWOt_gdn1KjizWwZyNc0reH-7f5k_x4vXxeX63iFUKrIuzRGBpBDU6L7XKec6B5qVRqbBoQCteWlNozYoCUGlhLSJFzqCETOWgkU_Jxc678m7dm9DJpet9O5yUDNIMMs7SAbraQcq7ELyxcuWrBv1GApXbNiTIsY2BvRyFGBTW1mOrqvAdYJCkDIqt83bHBVV1Xy_vl_6uTo7VDYLrfYIP53_CcqXtf_DfFz4BxCKQ1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215616325</pqid></control><display><type>article</type><title>Nonmalleable encryption of quantum information</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ambainis, Andris ; Bouda, Jan ; Winter, Andreas</creator><creatorcontrib>Ambainis, Andris ; Bouda, Jan ; Winter, Andreas</creatorcontrib><description>We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d ): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a unitary 2-design [Dankert, et al. , e-print arXiv:quant-ph/0606161 ], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of ( d 2 − 1 ) 2 + 1 on the number of unitaries in a 2-design [Gross, et al. , J. Math. Phys. 48, 052104 (2007)], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with ≤ d 5 elements, we show that there are always approximate 2-designs with O ( ϵ − 2 d 4   log   d ) elements.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3094756</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Approximation ; Data encryption ; Exact sciences and technology ; Information ; Mathematical methods in physics ; Mathematics ; Physics ; Quantum physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2009-04, Vol.50 (4), p.042106-042106-8</ispartof><rights>American Institute of Physics</rights><rights>2009 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Physics Apr 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3</citedby><cites>FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3094756$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21452195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambainis, Andris</creatorcontrib><creatorcontrib>Bouda, Jan</creatorcontrib><creatorcontrib>Winter, Andreas</creatorcontrib><title>Nonmalleable encryption of quantum information</title><title>Journal of mathematical physics</title><description>We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d ): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a unitary 2-design [Dankert, et al. , e-print arXiv:quant-ph/0606161 ], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of ( d 2 − 1 ) 2 + 1 on the number of unitaries in a 2-design [Gross, et al. , J. Math. Phys. 48, 052104 (2007)], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with ≤ d 5 elements, we show that there are always approximate 2-designs with O ( ϵ − 2 d 4   log   d ) elements.</description><subject>Approximation</subject><subject>Data encryption</subject><subject>Exact sciences and technology</subject><subject>Information</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oMgeFBI3dnNx-YiSPELil70vEz2A1KSbLubCP33pjaoIPU0MDzvM8xLyDnQGdCM38CM0yLJ0-yATICKIs6zVBySCaWMxSwR4pichLCkFEAkyYTMXlzbYF0bLGsTmVb5zaqrXBs5G617bLu-iarWOt_gdn1KjizWwZyNc0reH-7f5k_x4vXxeX63iFUKrIuzRGBpBDU6L7XKec6B5qVRqbBoQCteWlNozYoCUGlhLSJFzqCETOWgkU_Jxc678m7dm9DJpet9O5yUDNIMMs7SAbraQcq7ELyxcuWrBv1GApXbNiTIsY2BvRyFGBTW1mOrqvAdYJCkDIqt83bHBVV1Xy_vl_6uTo7VDYLrfYIP53_CcqXtf_DfFz4BxCKQ1g</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Ambainis, Andris</creator><creator>Bouda, Jan</creator><creator>Winter, Andreas</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Nonmalleable encryption of quantum information</title><author>Ambainis, Andris ; Bouda, Jan ; Winter, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Data encryption</topic><topic>Exact sciences and technology</topic><topic>Information</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambainis, Andris</creatorcontrib><creatorcontrib>Bouda, Jan</creatorcontrib><creatorcontrib>Winter, Andreas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambainis, Andris</au><au>Bouda, Jan</au><au>Winter, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonmalleable encryption of quantum information</atitle><jtitle>Journal of mathematical physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>50</volume><issue>4</issue><spage>042106</spage><epage>042106-8</epage><pages>042106-042106-8</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We introduce the notion of nonmalleability of a quantum state encryption scheme (in dimension d ): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a unitary 2-design [Dankert, et al. , e-print arXiv:quant-ph/0606161 ], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of ( d 2 − 1 ) 2 + 1 on the number of unitaries in a 2-design [Gross, et al. , J. Math. Phys. 48, 052104 (2007)], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with ≤ d 5 elements, we show that there are always approximate 2-designs with O ( ϵ − 2 d 4   log   d ) elements.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3094756</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2009-04, Vol.50 (4), p.042106-042106-8
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_3094756
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Approximation
Data encryption
Exact sciences and technology
Information
Mathematical methods in physics
Mathematics
Physics
Quantum physics
Sciences and techniques of general use
title Nonmalleable encryption of quantum information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonmalleable%20encryption%20of%20quantum%20information&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ambainis,%20Andris&rft.date=2009-04-01&rft.volume=50&rft.issue=4&rft.spage=042106&rft.epage=042106-8&rft.pages=042106-042106-8&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3094756&rft_dat=%3Cproquest_cross%3E1703420711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-648abe80ed7bdc7373107bec58fae1dc3bfe9dd2991acd8ffaa0a321b16c71da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215616325&rft_id=info:pmid/&rfr_iscdi=true