Loading…
Carbothermal reduction vapor phase transport growth of ZnO nanostructures: Effects of various carbon sources
ZnO nanostructures were grown via carbothermal reduction vapor phase transport with carbon black, activated carbon, and graphite powders. Nanostructures can be grown at significantly lower temperatures with carbon black and activated carbon, although with different morphologies compared to graphite....
Saved in:
Published in: | Journal of applied physics 2009-05, Vol.105 (9), p.094306-094306-6 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnO nanostructures were grown via carbothermal reduction vapor phase transport with carbon black, activated carbon, and graphite powders. Nanostructures can be grown at significantly lower temperatures with carbon black and activated carbon, although with different morphologies compared to graphite. The surface areas of the carbon black and activated carbon are higher than those of graphite; this has been used previously to explain the origin of such growth and morphology differences. We use different ZnO∕graphite ratios to equalize surface areas compared to carbon black and eliminate this effect, but differences in nanostructure growth and morphology remain. We discuss the effects of thermodynamics and carbon purity and conclude that the high surface activities of the carbon black and activated carbon are the reason for our results. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3121213 |