Loading…

Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts

We have self-assembled photonic crystal with a multistack structure using same size of spheres but from materials with different refractive indices. Al 2 O 3 , ZnO, and TiO 2 are infiltrated into opal templates by atomic layer deposition. Stacking multiple inverse opal structures with different refr...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2009-08, Vol.95 (9), p.091101-091101-3
Main Authors: Hwang, Dae-Kue, Noh, Heeso, Cao, Hui, Chang, Robert P. H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03
cites cdi_FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03
container_end_page 091101-3
container_issue 9
container_start_page 091101
container_title Applied physics letters
container_volume 95
creator Hwang, Dae-Kue
Noh, Heeso
Cao, Hui
Chang, Robert P. H.
description We have self-assembled photonic crystal with a multistack structure using same size of spheres but from materials with different refractive indices. Al 2 O 3 , ZnO, and TiO 2 are infiltrated into opal templates by atomic layer deposition. Stacking multiple inverse opal structures with different refractive index contrasts broadens the reflection bands dramatically. Numerical simulations with plane wave expansion method show good agreement with experimental results.
doi_str_mv 10.1063/1.3216582
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3216582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzG6yvQhStAoFPeg5ZLOTNtomJYlV396V1qOn4Ydv5h8-Qi45m3Am4ZpPQHDZtOKIjDhTqgLO22MyYoxBJacNPyVnOb8NsREAI9I9r2KJwVvamdAvzZZiWPqAmHxY0k9fVtSHHaaMNG7Nmm4-1sXnYux7ptHR3juHCUOhCV0ytvgdDgs9flEbQ0kml3xOTpxZZ7w4zDF5vb97mT1Ui6f54-x2UVnR1qUSDt1U1LLnyBrXgUClOgaoWgPWsaFHgjKiUTVM2x5lbVA2EoSSyjHoGYzJ1f6uTTHn4R-9TX5j0rfmTP_K0Vwf5AzszZ7N1hdTfAz_w3-G9MGQHgzBD7-xbiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Hwang, Dae-Kue ; Noh, Heeso ; Cao, Hui ; Chang, Robert P. H.</creator><creatorcontrib>Hwang, Dae-Kue ; Noh, Heeso ; Cao, Hui ; Chang, Robert P. H.</creatorcontrib><description>We have self-assembled photonic crystal with a multistack structure using same size of spheres but from materials with different refractive indices. Al 2 O 3 , ZnO, and TiO 2 are infiltrated into opal templates by atomic layer deposition. Stacking multiple inverse opal structures with different refractive index contrasts broadens the reflection bands dramatically. Numerical simulations with plane wave expansion method show good agreement with experimental results.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3216582</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2009-08, Vol.95 (9), p.091101-091101-3</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03</citedby><cites>FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3216582$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Hwang, Dae-Kue</creatorcontrib><creatorcontrib>Noh, Heeso</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><title>Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts</title><title>Applied physics letters</title><description>We have self-assembled photonic crystal with a multistack structure using same size of spheres but from materials with different refractive indices. Al 2 O 3 , ZnO, and TiO 2 are infiltrated into opal templates by atomic layer deposition. Stacking multiple inverse opal structures with different refractive index contrasts broadens the reflection bands dramatically. Numerical simulations with plane wave expansion method show good agreement with experimental results.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yBXD1uTzG6yvQhStAoFPeg5ZLOTNtomJYlV396V1qOn4Ydv5h8-Qi45m3Am4ZpPQHDZtOKIjDhTqgLO22MyYoxBJacNPyVnOb8NsREAI9I9r2KJwVvamdAvzZZiWPqAmHxY0k9fVtSHHaaMNG7Nmm4-1sXnYux7ptHR3juHCUOhCV0ytvgdDgs9flEbQ0kml3xOTpxZZ7w4zDF5vb97mT1Ui6f54-x2UVnR1qUSDt1U1LLnyBrXgUClOgaoWgPWsaFHgjKiUTVM2x5lbVA2EoSSyjHoGYzJ1f6uTTHn4R-9TX5j0rfmTP_K0Vwf5AzszZ7N1hdTfAz_w3-G9MGQHgzBD7-xbiU</recordid><startdate>20090831</startdate><enddate>20090831</enddate><creator>Hwang, Dae-Kue</creator><creator>Noh, Heeso</creator><creator>Cao, Hui</creator><creator>Chang, Robert P. H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090831</creationdate><title>Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts</title><author>Hwang, Dae-Kue ; Noh, Heeso ; Cao, Hui ; Chang, Robert P. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Dae-Kue</creatorcontrib><creatorcontrib>Noh, Heeso</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Chang, Robert P. H.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Dae-Kue</au><au>Noh, Heeso</au><au>Cao, Hui</au><au>Chang, Robert P. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts</atitle><jtitle>Applied physics letters</jtitle><date>2009-08-31</date><risdate>2009</risdate><volume>95</volume><issue>9</issue><spage>091101</spage><epage>091101-3</epage><pages>091101-091101-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We have self-assembled photonic crystal with a multistack structure using same size of spheres but from materials with different refractive indices. Al 2 O 3 , ZnO, and TiO 2 are infiltrated into opal templates by atomic layer deposition. Stacking multiple inverse opal structures with different refractive index contrasts broadens the reflection bands dramatically. Numerical simulations with plane wave expansion method show good agreement with experimental results.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3216582</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2009-08, Vol.95 (9), p.091101-091101-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3216582
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
title Photonic bandgap engineering with inverse opal multistacks of different refractive index contrasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20bandgap%20engineering%20with%20inverse%20opal%20multistacks%20of%20different%20refractive%20index%20contrasts&rft.jtitle=Applied%20physics%20letters&rft.au=Hwang,%20Dae-Kue&rft.date=2009-08-31&rft.volume=95&rft.issue=9&rft.spage=091101&rft.epage=091101-3&rft.pages=091101-091101-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3216582&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-2fef9246d1e05fb32e77b03e78a3cf0ffe637a2574398de64ae65632767f03d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true