Loading…
Simultaneous border-collision and period-doubling bifurcations
We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that with sufficient nondegeneracy conditions, a locus of period-doubling bifurcations emanates nontangentially from a loc...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2009-09, Vol.19 (3), p.033146-033146-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3 |
container_end_page | 033146-11 |
container_issue | 3 |
container_start_page | 033146 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 19 |
creator | Simpson, D. J. W. Meiss, J. D. |
description | We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that with sufficient nondegeneracy conditions, a locus of period-doubling bifurcations emanates nontangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics is completely classified; in particular, we give conditions that ensure chaos. |
doi_str_mv | 10.1063/1.3227645 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3227645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733598994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMo7rp68A9Ib6LQdZKmaXNQkMUvWPCgnkOSphJpm5q0gv_eri2sF8XTDMwzLzMPQscYlhhYcoGXCSEZo-kOmmPIeZyxnOxu-pTGOAWYoYMQ3gAAkyTdRzPMM06AsDm6erJ1X3WyMa4PkXK-MD7WrqpssK6JZFNErfHWFXHhelXZ5jVStuy9lt0wD4dor5RVMEdTXaCX25vn1X28frx7WF2vY50C7-IyURwkZVJljOclJQRwSqlhCrAGxqlJtdI5MRkHRgslNRigSsqyBJrLIlmg0zG39e69N6ETtQ3aVNV4uMiSJOU553Qgz0ZSexeCN6Vova2l_xQYxMaWwGKyNbAnU2qvalNsyUnPAFyOQNC2-_7497SfIsUoctg___f-X_CH81tQtEWZfAGn_JY_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733598994</pqid></control><display><type>article</type><title>Simultaneous border-collision and period-doubling bifurcations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Simpson, D. J. W. ; Meiss, J. D.</creator><creatorcontrib>Simpson, D. J. W. ; Meiss, J. D.</creatorcontrib><description>We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that with sufficient nondegeneracy conditions, a locus of period-doubling bifurcations emanates nontangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics is completely classified; in particular, we give conditions that ensure chaos.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.3227645</identifier><identifier>PMID: 19792026</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer Simulation ; Models, Statistical ; Nonlinear Dynamics ; Oscillometry - methods</subject><ispartof>Chaos (Woodbury, N.Y.), 2009-09, Vol.19 (3), p.033146-033146-11</ispartof><rights>American Institute of Physics</rights><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3</citedby><cites>FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19792026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simpson, D. J. W.</creatorcontrib><creatorcontrib>Meiss, J. D.</creatorcontrib><title>Simultaneous border-collision and period-doubling bifurcations</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that with sufficient nondegeneracy conditions, a locus of period-doubling bifurcations emanates nontangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics is completely classified; in particular, we give conditions that ensure chaos.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Models, Statistical</subject><subject>Nonlinear Dynamics</subject><subject>Oscillometry - methods</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMo7rp68A9Ib6LQdZKmaXNQkMUvWPCgnkOSphJpm5q0gv_eri2sF8XTDMwzLzMPQscYlhhYcoGXCSEZo-kOmmPIeZyxnOxu-pTGOAWYoYMQ3gAAkyTdRzPMM06AsDm6erJ1X3WyMa4PkXK-MD7WrqpssK6JZFNErfHWFXHhelXZ5jVStuy9lt0wD4dor5RVMEdTXaCX25vn1X28frx7WF2vY50C7-IyURwkZVJljOclJQRwSqlhCrAGxqlJtdI5MRkHRgslNRigSsqyBJrLIlmg0zG39e69N6ETtQ3aVNV4uMiSJOU553Qgz0ZSexeCN6Vova2l_xQYxMaWwGKyNbAnU2qvalNsyUnPAFyOQNC2-_7497SfIsUoctg___f-X_CH81tQtEWZfAGn_JY_</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Simpson, D. J. W.</creator><creator>Meiss, J. D.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Simultaneous border-collision and period-doubling bifurcations</title><author>Simpson, D. J. W. ; Meiss, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Models, Statistical</topic><topic>Nonlinear Dynamics</topic><topic>Oscillometry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, D. J. W.</creatorcontrib><creatorcontrib>Meiss, J. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, D. J. W.</au><au>Meiss, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous border-collision and period-doubling bifurcations</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>033146</spage><epage>033146-11</epage><pages>033146-033146-11</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that with sufficient nondegeneracy conditions, a locus of period-doubling bifurcations emanates nontangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics is completely classified; in particular, we give conditions that ensure chaos.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19792026</pmid><doi>10.1063/1.3227645</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2009-09, Vol.19 (3), p.033146-033146-11 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3227645 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Computer Simulation Models, Statistical Nonlinear Dynamics Oscillometry - methods |
title | Simultaneous border-collision and period-doubling bifurcations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20border-collision%20and%20period-doubling%20bifurcations&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Simpson,%20D.%20J.%20W.&rft.date=2009-09-01&rft.volume=19&rft.issue=3&rft.spage=033146&rft.epage=033146-11&rft.pages=033146-033146-11&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.3227645&rft_dat=%3Cproquest_cross%3E733598994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-f3b90a46ab7698f42201544e6b01c0694e5cbc82e79064dbac0e04baaff048ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733598994&rft_id=info:pmid/19792026&rfr_iscdi=true |