Loading…
Electroluminescence enhancement in polymer light-emitting diodes through hole injection layer insertion
After a hole injection layer is inserted into a polymer light-emitting diode (PLED), the positive polaron is easily injected into the polymer layer. An applied electrical field drives the positive polaron to approach and collide with the nonemissive triplet exciton. The collision between the positiv...
Saved in:
Published in: | Journal of applied physics 2009-10, Vol.106 (7), p.074513-074513-4 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | After a hole injection layer is inserted into a polymer light-emitting diode (PLED), the positive polaron is easily injected into the polymer layer. An applied electrical field drives the positive polaron to approach and collide with the nonemissive triplet exciton. The collision between the positive polaron and neutral triplet exciton induces the exciton to emit light. Based on this physical picture, the maximum quantum efficiency of the PLEDs, 61.6%, is consistent with the experimental result of 60%. With the help of an external magnetic field, a structure of PLEDs with high electroluminescent efficiency is designed. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3240347 |