Loading…

Formation of viscoplastic drops by capillary breakup

The process of growth and detachment of drops from a capillary nozzle is studied experimentally by high-speed imaging. Newtonian drops are compared to shear-thinning and viscoplastic drops. Both Newtonian and shear-thinning fluid drops grow on the end of the capillary until a maximum supportable ten...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2010-03, Vol.22 (3), p.033101-033101-11
Main Authors: German, G., Bertola, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503
cites cdi_FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503
container_end_page 033101-11
container_issue 3
container_start_page 033101
container_title Physics of fluids (1994)
container_volume 22
creator German, G.
Bertola, V.
description The process of growth and detachment of drops from a capillary nozzle is studied experimentally by high-speed imaging. Newtonian drops are compared to shear-thinning and viscoplastic drops. Both Newtonian and shear-thinning fluid drops grow on the end of the capillary until a maximum supportable tensile stress is reached in the drop neck, after which they become unstable and detach. The critical stress is not influenced by variations in viscosity or in the degree of shear thinning. Viscoplastic fluids show a different behavior: at low values of the yield stress, the critical stability behavior is similar to that of Newtonian and shear-thinning drops. Above a threshold value, characterized in terms of the drop size, surface tension and tensile yield-stress magnitude, yield-stress forces are larger than surface forces, and the maximum tensile stress achievable in the drop neck at the point of critical stability is governed by the von Mises criterion.
doi_str_mv 10.1063/1.3339783
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3339783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3339783Formation_of_viscopl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv8FePHjYOrOTJs1FkGJVKHjRc5hNNxDdNkuyCv32bv_Qm6eZw-893ntC3CJMEBQ94ISIjJ7RmRghzEyplVLnu19DqRThpbjK-QsAyFRqJOQipjX3IW6K6IvfkF3sWs59cMUqxS4X9bZw3IW25bQt6tTw9093LS48t7m5Od6x-Fw8f8xfy-X7y9v8aVk6QtmXulZ-pbGpjJlNVyilRAWOkUkSeaiGvChNw0NMZGw8kJcSXO2MRu-nQGNxf_B1KeacGm-7FNZDEItgd3Ut2mPdgb07sB1nx61PvHEhnwRVpQkAd9zjgcsu9Pvi_5uetrHR2-M29AecyWiR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of viscoplastic drops by capillary breakup</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>German, G. ; Bertola, V.</creator><creatorcontrib>German, G. ; Bertola, V.</creatorcontrib><description>The process of growth and detachment of drops from a capillary nozzle is studied experimentally by high-speed imaging. Newtonian drops are compared to shear-thinning and viscoplastic drops. Both Newtonian and shear-thinning fluid drops grow on the end of the capillary until a maximum supportable tensile stress is reached in the drop neck, after which they become unstable and detach. The critical stress is not influenced by variations in viscosity or in the degree of shear thinning. Viscoplastic fluids show a different behavior: at low values of the yield stress, the critical stability behavior is similar to that of Newtonian and shear-thinning drops. Above a threshold value, characterized in terms of the drop size, surface tension and tensile yield-stress magnitude, yield-stress forces are larger than surface forces, and the maximum tensile stress achievable in the drop neck at the point of critical stability is governed by the von Mises criterion.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3339783</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Drops and bubbles ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Non-newtonian fluid flows ; Nonhomogeneous flows ; Physics ; Surface-tension-driven instability</subject><ispartof>Physics of fluids (1994), 2010-03, Vol.22 (3), p.033101-033101-11</ispartof><rights>2010 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503</citedby><cites>FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22730013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>German, G.</creatorcontrib><creatorcontrib>Bertola, V.</creatorcontrib><title>Formation of viscoplastic drops by capillary breakup</title><title>Physics of fluids (1994)</title><description>The process of growth and detachment of drops from a capillary nozzle is studied experimentally by high-speed imaging. Newtonian drops are compared to shear-thinning and viscoplastic drops. Both Newtonian and shear-thinning fluid drops grow on the end of the capillary until a maximum supportable tensile stress is reached in the drop neck, after which they become unstable and detach. The critical stress is not influenced by variations in viscosity or in the degree of shear thinning. Viscoplastic fluids show a different behavior: at low values of the yield stress, the critical stability behavior is similar to that of Newtonian and shear-thinning drops. Above a threshold value, characterized in terms of the drop size, surface tension and tensile yield-stress magnitude, yield-stress forces are larger than surface forces, and the maximum tensile stress achievable in the drop neck at the point of critical stability is governed by the von Mises criterion.</description><subject>Drops and bubbles</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Non-newtonian fluid flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Surface-tension-driven instability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv8FePHjYOrOTJs1FkGJVKHjRc5hNNxDdNkuyCv32bv_Qm6eZw-893ntC3CJMEBQ94ISIjJ7RmRghzEyplVLnu19DqRThpbjK-QsAyFRqJOQipjX3IW6K6IvfkF3sWs59cMUqxS4X9bZw3IW25bQt6tTw9093LS48t7m5Od6x-Fw8f8xfy-X7y9v8aVk6QtmXulZ-pbGpjJlNVyilRAWOkUkSeaiGvChNw0NMZGw8kJcSXO2MRu-nQGNxf_B1KeacGm-7FNZDEItgd3Ut2mPdgb07sB1nx61PvHEhnwRVpQkAd9zjgcsu9Pvi_5uetrHR2-M29AecyWiR</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>German, G.</creator><creator>Bertola, V.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100301</creationdate><title>Formation of viscoplastic drops by capillary breakup</title><author>German, G. ; Bertola, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Drops and bubbles</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Non-newtonian fluid flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Surface-tension-driven instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>German, G.</creatorcontrib><creatorcontrib>Bertola, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>German, G.</au><au>Bertola, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of viscoplastic drops by capillary breakup</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>22</volume><issue>3</issue><spage>033101</spage><epage>033101-11</epage><pages>033101-033101-11</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The process of growth and detachment of drops from a capillary nozzle is studied experimentally by high-speed imaging. Newtonian drops are compared to shear-thinning and viscoplastic drops. Both Newtonian and shear-thinning fluid drops grow on the end of the capillary until a maximum supportable tensile stress is reached in the drop neck, after which they become unstable and detach. The critical stress is not influenced by variations in viscosity or in the degree of shear thinning. Viscoplastic fluids show a different behavior: at low values of the yield stress, the critical stability behavior is similar to that of Newtonian and shear-thinning drops. Above a threshold value, characterized in terms of the drop size, surface tension and tensile yield-stress magnitude, yield-stress forces are larger than surface forces, and the maximum tensile stress achievable in the drop neck at the point of critical stability is governed by the von Mises criterion.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3339783</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2010-03, Vol.22 (3), p.033101-033101-11
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_3339783
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Drops and bubbles
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Non-newtonian fluid flows
Nonhomogeneous flows
Physics
Surface-tension-driven instability
title Formation of viscoplastic drops by capillary breakup
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20viscoplastic%20drops%20by%20capillary%20breakup&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=German,%20G.&rft.date=2010-03-01&rft.volume=22&rft.issue=3&rft.spage=033101&rft.epage=033101-11&rft.pages=033101-033101-11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3339783&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3339783Formation_of_viscopl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-7b6fd71e29985d1444160ca1a3433f02063149ea0891a1ef03f440cbc971ff503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true