Loading…
Vector and axial anomaly in the Thirring–Wess model
We study the two dimensional vector meson model introduced by Thirring and Wess, that is to say the Schwinger model with massive photon and massless fermion. We prove, with a renormalization group approach, that the vector and axial Ward identities are broken by the Adler–Bell–Jackiw anomaly; and we...
Saved in:
Published in: | Journal of mathematical physics 2010-08, Vol.51 (8), p.082306-082306-28 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the two dimensional vector meson model introduced by Thirring and Wess, that is to say the Schwinger model with massive photon and massless fermion. We prove, with a renormalization group approach, that the vector and axial Ward identities are broken by the Adler–Bell–Jackiw anomaly; and we rigorously establish three widely believed consequences: (a) the interacting meson-meson correlation equals a free boson propagator, although the mass is additively renormalized by the anomaly; (b) the anomaly is quadratic in the charge, in agreement with the Adler–Bardeen formula; (c) the fermion-fermion correlation has an anomalous long-distance decay. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3475536 |