Loading…

Thermally stable ohmic contacts to p -type GaAs. IX. NiInW and NiIn(Mn)W contact metals

Thermally stable, low-resistance p-type ohmic contacts have been developed by depositing NiInW metals on GaAs substrates in which Be and F were coimplanted. The contacts provided resistances of about 1.4 Ω mm after annealing at temperatures in the range of 300–800 °C for short times. The electrical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1991-12, Vol.70 (12), p.7443-7448
Main Authors: Hallali, P.-E., Murakami, Masanori, Price, W. H., Norcott, M. H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermally stable, low-resistance p-type ohmic contacts have been developed by depositing NiInW metals on GaAs substrates in which Be and F were coimplanted. The contacts provided resistances of about 1.4 Ω mm after annealing at temperatures in the range of 300–800 °C for short times. The electrical properties did not deteriorate after annealing at 400 °C for more than 100 h, which far exceeds the requirements for current GaAs device fabrication. The present study demonstrated for the first time that thermally stable, low-resistance ohmic contacts to both n- and p-type GaAs can be fabricated using the same metallurgy. In addition, NiInW ohmic contacts were prepared by simultaneous (one-step) annealing for ion-implant activation and contact formation, which simplifies significantly the device fabrication process. A factor-of-2 reduction of the contact resistances was achieved by slight etching of the GaAs surface prior to the contact metal deposition so that the metal/GaAs interface contacted the peak position of the Be concentration in the GaAs substrate. Another method used to reduce the contact resistance was to add a small amount of Mn to the NiInW metals: the resistance decreased with increasing amounts of Mn. The contacts had smooth morphology and shallow depth, less than 70 nm, which is desirable for very-large-scale integration device application.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.349740