Loading…
Orbit-averaged guiding-center Fokker–Planck operator for numerical applications
A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dime...
Saved in:
Published in: | Physics of plasmas 2010-11, Vol.17 (11), p.112513-112513-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3 |
container_end_page | 112513-12 |
container_issue | 11 |
container_start_page | 112513 |
container_title | Physics of plasmas |
container_volume | 17 |
creator | Decker, J. Peysson, Y. Brizard, A. J. Duthoit, F.-X. |
description | A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit. |
doi_str_mv | 10.1063/1.3519514 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3519514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQQIMoWKsH_2DBk8LWZJNNshdBilWhUAUFbyE7m62x7WZJ0oI3_8E_9EvctoonxcMwc3g8mIfQMcEDgjk9JwOakyInbAf1CJZFKrhgu-tb4JRz9rSPDkJ4wRgznsseup_40sZUr4zXU1Ml06WtbDNNwTTR-GTkZjPjP97e7-a6gVni2o6Lzid1N81yYbwFPU902867I1rXhEO0V-t5MEdfu48eR1cPw5t0PLm-HV6OU6Ayi6koRQlFxoqcs5wSYySABsJKWWjBOcVVRlmlK1IXIHRWUi1AlkAziSXNc0376GTrdSFaFcBGA8_gmsZAVBnpnIUsOup0S4F3IXhTq9bbhfavimC1LqaI-irWsRdbdi3bPPM7vMmmvrOpTbZOcPZvwV_wyvkfULVVTT8BhPCQ1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</creator><creatorcontrib>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</creatorcontrib><description>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3519514</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; BOOTSTRAP CURRENT ; CHARGED-PARTICLE TRANSPORT ; CURRENTS ; DIFFERENTIAL EQUATIONS ; DISTRIBUTION FUNCTIONS ; ELECTRIC CURRENTS ; EQUATIONS ; FOKKER-PLANCK EQUATION ; FUNCTIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PLASMA ; PLASMA SIMULATION ; RADIATION TRANSPORT ; SIMULATION ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Physics of plasmas, 2010-11, Vol.17 (11), p.112513-112513-12</ispartof><rights>American Institute of Physics</rights><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</citedby><cites>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3519514$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21531989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Decker, J.</creatorcontrib><creatorcontrib>Peysson, Y.</creatorcontrib><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Duthoit, F.-X.</creatorcontrib><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><title>Physics of plasmas</title><description>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>BOOTSTRAP CURRENT</subject><subject>CHARGED-PARTICLE TRANSPORT</subject><subject>CURRENTS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>ELECTRIC CURRENTS</subject><subject>EQUATIONS</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>FUNCTIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PLASMA</subject><subject>PLASMA SIMULATION</subject><subject>RADIATION TRANSPORT</subject><subject>SIMULATION</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQQIMoWKsH_2DBk8LWZJNNshdBilWhUAUFbyE7m62x7WZJ0oI3_8E_9EvctoonxcMwc3g8mIfQMcEDgjk9JwOakyInbAf1CJZFKrhgu-tb4JRz9rSPDkJ4wRgznsseup_40sZUr4zXU1Ml06WtbDNNwTTR-GTkZjPjP97e7-a6gVni2o6Lzid1N81yYbwFPU902867I1rXhEO0V-t5MEdfu48eR1cPw5t0PLm-HV6OU6Ayi6koRQlFxoqcs5wSYySABsJKWWjBOcVVRlmlK1IXIHRWUi1AlkAziSXNc0376GTrdSFaFcBGA8_gmsZAVBnpnIUsOup0S4F3IXhTq9bbhfavimC1LqaI-irWsRdbdi3bPPM7vMmmvrOpTbZOcPZvwV_wyvkfULVVTT8BhPCQ1w</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Decker, J.</creator><creator>Peysson, Y.</creator><creator>Brizard, A. J.</creator><creator>Duthoit, F.-X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><author>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>BOOTSTRAP CURRENT</topic><topic>CHARGED-PARTICLE TRANSPORT</topic><topic>CURRENTS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>ELECTRIC CURRENTS</topic><topic>EQUATIONS</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>FUNCTIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PLASMA</topic><topic>PLASMA SIMULATION</topic><topic>RADIATION TRANSPORT</topic><topic>SIMULATION</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decker, J.</creatorcontrib><creatorcontrib>Peysson, Y.</creatorcontrib><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Duthoit, F.-X.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decker, J.</au><au>Peysson, Y.</au><au>Brizard, A. J.</au><au>Duthoit, F.-X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</atitle><jtitle>Physics of plasmas</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>17</volume><issue>11</issue><spage>112513</spage><epage>112513-12</epage><pages>112513-112513-12</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3519514</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2010-11, Vol.17 (11), p.112513-112513-12 |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3519514 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY BOOTSTRAP CURRENT CHARGED-PARTICLE TRANSPORT CURRENTS DIFFERENTIAL EQUATIONS DISTRIBUTION FUNCTIONS ELECTRIC CURRENTS EQUATIONS FOKKER-PLANCK EQUATION FUNCTIONS PARTIAL DIFFERENTIAL EQUATIONS PLASMA PLASMA SIMULATION RADIATION TRANSPORT SIMULATION THREE-DIMENSIONAL CALCULATIONS |
title | Orbit-averaged guiding-center Fokker–Planck operator for numerical applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbit-averaged%20guiding-center%20Fokker%E2%80%93Planck%20operator%20for%20numerical%20applications&rft.jtitle=Physics%20of%20plasmas&rft.au=Decker,%20J.&rft.date=2010-11-01&rft.volume=17&rft.issue=11&rft.spage=112513&rft.epage=112513-12&rft.pages=112513-112513-12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3519514&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |