Loading…

Orbit-averaged guiding-center Fokker–Planck operator for numerical applications

A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dime...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2010-11, Vol.17 (11), p.112513-112513-12
Main Authors: Decker, J., Peysson, Y., Brizard, A. J., Duthoit, F.-X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3
cites cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3
container_end_page 112513-12
container_issue 11
container_start_page 112513
container_title Physics of plasmas
container_volume 17
creator Decker, J.
Peysson, Y.
Brizard, A. J.
Duthoit, F.-X.
description A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.
doi_str_mv 10.1063/1.3519514
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3519514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQQIMoWKsH_2DBk8LWZJNNshdBilWhUAUFbyE7m62x7WZJ0oI3_8E_9EvctoonxcMwc3g8mIfQMcEDgjk9JwOakyInbAf1CJZFKrhgu-tb4JRz9rSPDkJ4wRgznsseup_40sZUr4zXU1Ml06WtbDNNwTTR-GTkZjPjP97e7-a6gVni2o6Lzid1N81yYbwFPU902867I1rXhEO0V-t5MEdfu48eR1cPw5t0PLm-HV6OU6Ayi6koRQlFxoqcs5wSYySABsJKWWjBOcVVRlmlK1IXIHRWUi1AlkAziSXNc0376GTrdSFaFcBGA8_gmsZAVBnpnIUsOup0S4F3IXhTq9bbhfavimC1LqaI-irWsRdbdi3bPPM7vMmmvrOpTbZOcPZvwV_wyvkfULVVTT8BhPCQ1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</creator><creatorcontrib>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</creatorcontrib><description>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3519514</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; BOOTSTRAP CURRENT ; CHARGED-PARTICLE TRANSPORT ; CURRENTS ; DIFFERENTIAL EQUATIONS ; DISTRIBUTION FUNCTIONS ; ELECTRIC CURRENTS ; EQUATIONS ; FOKKER-PLANCK EQUATION ; FUNCTIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PLASMA ; PLASMA SIMULATION ; RADIATION TRANSPORT ; SIMULATION ; THREE-DIMENSIONAL CALCULATIONS</subject><ispartof>Physics of plasmas, 2010-11, Vol.17 (11), p.112513-112513-12</ispartof><rights>American Institute of Physics</rights><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</citedby><cites>FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3519514$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21531989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Decker, J.</creatorcontrib><creatorcontrib>Peysson, Y.</creatorcontrib><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Duthoit, F.-X.</creatorcontrib><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><title>Physics of plasmas</title><description>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>BOOTSTRAP CURRENT</subject><subject>CHARGED-PARTICLE TRANSPORT</subject><subject>CURRENTS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>ELECTRIC CURRENTS</subject><subject>EQUATIONS</subject><subject>FOKKER-PLANCK EQUATION</subject><subject>FUNCTIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PLASMA</subject><subject>PLASMA SIMULATION</subject><subject>RADIATION TRANSPORT</subject><subject>SIMULATION</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQQIMoWKsH_2DBk8LWZJNNshdBilWhUAUFbyE7m62x7WZJ0oI3_8E_9EvctoonxcMwc3g8mIfQMcEDgjk9JwOakyInbAf1CJZFKrhgu-tb4JRz9rSPDkJ4wRgznsseup_40sZUr4zXU1Ml06WtbDNNwTTR-GTkZjPjP97e7-a6gVni2o6Lzid1N81yYbwFPU902867I1rXhEO0V-t5MEdfu48eR1cPw5t0PLm-HV6OU6Ayi6koRQlFxoqcs5wSYySABsJKWWjBOcVVRlmlK1IXIHRWUi1AlkAziSXNc0376GTrdSFaFcBGA8_gmsZAVBnpnIUsOup0S4F3IXhTq9bbhfavimC1LqaI-irWsRdbdi3bPPM7vMmmvrOpTbZOcPZvwV_wyvkfULVVTT8BhPCQ1w</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Decker, J.</creator><creator>Peysson, Y.</creator><creator>Brizard, A. J.</creator><creator>Duthoit, F.-X.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</title><author>Decker, J. ; Peysson, Y. ; Brizard, A. J. ; Duthoit, F.-X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>BOOTSTRAP CURRENT</topic><topic>CHARGED-PARTICLE TRANSPORT</topic><topic>CURRENTS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>ELECTRIC CURRENTS</topic><topic>EQUATIONS</topic><topic>FOKKER-PLANCK EQUATION</topic><topic>FUNCTIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PLASMA</topic><topic>PLASMA SIMULATION</topic><topic>RADIATION TRANSPORT</topic><topic>SIMULATION</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decker, J.</creatorcontrib><creatorcontrib>Peysson, Y.</creatorcontrib><creatorcontrib>Brizard, A. J.</creatorcontrib><creatorcontrib>Duthoit, F.-X.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decker, J.</au><au>Peysson, Y.</au><au>Brizard, A. J.</au><au>Duthoit, F.-X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbit-averaged guiding-center Fokker–Planck operator for numerical applications</atitle><jtitle>Physics of plasmas</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>17</volume><issue>11</issue><spage>112513</spage><epage>112513-12</epage><pages>112513-112513-12</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A guiding-center Fokker–Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker–Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3519514</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2010-11, Vol.17 (11), p.112513-112513-12
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_3519514
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
BOOTSTRAP CURRENT
CHARGED-PARTICLE TRANSPORT
CURRENTS
DIFFERENTIAL EQUATIONS
DISTRIBUTION FUNCTIONS
ELECTRIC CURRENTS
EQUATIONS
FOKKER-PLANCK EQUATION
FUNCTIONS
PARTIAL DIFFERENTIAL EQUATIONS
PLASMA
PLASMA SIMULATION
RADIATION TRANSPORT
SIMULATION
THREE-DIMENSIONAL CALCULATIONS
title Orbit-averaged guiding-center Fokker–Planck operator for numerical applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbit-averaged%20guiding-center%20Fokker%E2%80%93Planck%20operator%20for%20numerical%20applications&rft.jtitle=Physics%20of%20plasmas&rft.au=Decker,%20J.&rft.date=2010-11-01&rft.volume=17&rft.issue=11&rft.spage=112513&rft.epage=112513-12&rft.pages=112513-112513-12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3519514&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-7b7bc9249564531ee8ccac14b89a76630d234dad1f9c7a2b3a7c8bc32808355a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true