Loading…
Electromagnetic characteristics of manganese oxide-coated Fe3O4 nanoparticles at 2-18 GHz
The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders...
Saved in:
Published in: | Journal of applied physics 2011-04, Vol.109 (7) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the transmission/reflection method in 2-18 GHz. MnOx-coated Fe3O4 NPs were prepared by sol-gel method followed by heat-treating at 300, 400, and 500 °C, respectively. The heat-treated powders were then used as magnetic fillers and added to an epoxy resin to prepare MnOx-coated Fe3O4 composites for the complex permittivity (ɛ′-jɛ″) and permeability (μ′-jμ″) measurements. After the sol-gel process, the coating of manganese oxide (mixture of major Mn2O3 and minor Mn3O4) reduced the value of ɛ′. The lower the heat-treating temperature, the larger the decrease in ɛ′. The relative decrease in ɛ′, compared with uncoated Fe3O4 nanoparticles, is 28.7, 23.5, and 20.0% for coated MnOx heat-treated at 300, 400, and 500 °C, respectively, while the relative decrease in ɛ″ is 74.1, 68.8, and 65.2%, respectively. In the present study, MnOx-coated Fe3O4 exhibited a significant decrease in dielectric loss tangent of ∼100% compared to that of uncoated NPs and can be of practical use for microwave components. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3545810 |