Loading…

High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures

We use a simple model based on the steady-state balance of current flowing by tunneling across a Si-SiO2-metal structure. The recombination current is not taken into account. This model yields analytical expressions for the positions of the quasi-Fermi levels at the Si-SiO2 interface which govern th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1994-06, Vol.75 (12), p.7922-7930
Main Author: Bredimas, Vassiliki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83
cites cdi_FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83
container_end_page 7930
container_issue 12
container_start_page 7922
container_title Journal of applied physics
container_volume 75
creator Bredimas, Vassiliki
description We use a simple model based on the steady-state balance of current flowing by tunneling across a Si-SiO2-metal structure. The recombination current is not taken into account. This model yields analytical expressions for the positions of the quasi-Fermi levels at the Si-SiO2 interface which govern the shape of current-voltage and capacitance-voltage characteristics. In particular, the knee which appears in the capacitance-voltage curves of inverse-biased structures and the corresponding plateau or the break in the slope of the 1/C2 versus applied voltage curve is correctly described. Measuring the slopes before and after the plateau or breaking, which marks the boundary of the tunneling domain, could provide information on the surface states when the surface parameters are known or vice versa. The main feature in the interpretation of the curves obtained is the degree of communication between metal and semiconductor, which is dominated by the tunnel transmission coefficient. The main parameters are therefore the oxide thickness and the minority barrier height for reverse polarization and the majority barrier height for forward bias polarization. It turns out that actual structures never have the predicted values for these barriers but notably lower ones when one assumes a perfect oxide layer. This fact may be due to defects in the oxide layer.
doi_str_mv 10.1063/1.356579
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_356579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_356579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoWEfBR-jSTcZ7kyZtljKoIwwIouuSJrdOpT9jkorz9s4wrg4fB77FYewWYYmg5T0updKqNGcsQ6gML5WCc5YBCOSVKc0lu4rxCwCxkiZjb-vuc5u3gb5nGt0-d3ZnXZfs6ChvaGt_uinkU5sPlGzPp9_OE480dG4a_ezSQaZ5HKnPYwqHPQeK1-yitX2km38u2MfT4_tqzTevzy-rhw13QpnEyVYOTaXBN8qhgEIQgi9IoFSt1IgGROlJCNM4KBqNXnhoNIEDqQVVcsHuTr8uTDEGautd6AYb9jVCfWxRY31qIf8AlOhRtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures</title><source>AIP Digital Archive</source><creator>Bredimas, Vassiliki</creator><creatorcontrib>Bredimas, Vassiliki</creatorcontrib><description>We use a simple model based on the steady-state balance of current flowing by tunneling across a Si-SiO2-metal structure. The recombination current is not taken into account. This model yields analytical expressions for the positions of the quasi-Fermi levels at the Si-SiO2 interface which govern the shape of current-voltage and capacitance-voltage characteristics. In particular, the knee which appears in the capacitance-voltage curves of inverse-biased structures and the corresponding plateau or the break in the slope of the 1/C2 versus applied voltage curve is correctly described. Measuring the slopes before and after the plateau or breaking, which marks the boundary of the tunneling domain, could provide information on the surface states when the surface parameters are known or vice versa. The main feature in the interpretation of the curves obtained is the degree of communication between metal and semiconductor, which is dominated by the tunnel transmission coefficient. The main parameters are therefore the oxide thickness and the minority barrier height for reverse polarization and the majority barrier height for forward bias polarization. It turns out that actual structures never have the predicted values for these barriers but notably lower ones when one assumes a perfect oxide layer. This fact may be due to defects in the oxide layer.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.356579</identifier><language>eng</language><ispartof>Journal of applied physics, 1994-06, Vol.75 (12), p.7922-7930</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83</citedby><cites>FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bredimas, Vassiliki</creatorcontrib><title>High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures</title><title>Journal of applied physics</title><description>We use a simple model based on the steady-state balance of current flowing by tunneling across a Si-SiO2-metal structure. The recombination current is not taken into account. This model yields analytical expressions for the positions of the quasi-Fermi levels at the Si-SiO2 interface which govern the shape of current-voltage and capacitance-voltage characteristics. In particular, the knee which appears in the capacitance-voltage curves of inverse-biased structures and the corresponding plateau or the break in the slope of the 1/C2 versus applied voltage curve is correctly described. Measuring the slopes before and after the plateau or breaking, which marks the boundary of the tunneling domain, could provide information on the surface states when the surface parameters are known or vice versa. The main feature in the interpretation of the curves obtained is the degree of communication between metal and semiconductor, which is dominated by the tunnel transmission coefficient. The main parameters are therefore the oxide thickness and the minority barrier height for reverse polarization and the majority barrier height for forward bias polarization. It turns out that actual structures never have the predicted values for these barriers but notably lower ones when one assumes a perfect oxide layer. This fact may be due to defects in the oxide layer.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoWEfBR-jSTcZ7kyZtljKoIwwIouuSJrdOpT9jkorz9s4wrg4fB77FYewWYYmg5T0updKqNGcsQ6gML5WCc5YBCOSVKc0lu4rxCwCxkiZjb-vuc5u3gb5nGt0-d3ZnXZfs6ChvaGt_uinkU5sPlGzPp9_OE480dG4a_ezSQaZ5HKnPYwqHPQeK1-yitX2km38u2MfT4_tqzTevzy-rhw13QpnEyVYOTaXBN8qhgEIQgi9IoFSt1IgGROlJCNM4KBqNXnhoNIEDqQVVcsHuTr8uTDEGautd6AYb9jVCfWxRY31qIf8AlOhRtQ</recordid><startdate>19940615</startdate><enddate>19940615</enddate><creator>Bredimas, Vassiliki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940615</creationdate><title>High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures</title><author>Bredimas, Vassiliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bredimas, Vassiliki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bredimas, Vassiliki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures</atitle><jtitle>Journal of applied physics</jtitle><date>1994-06-15</date><risdate>1994</risdate><volume>75</volume><issue>12</issue><spage>7922</spage><epage>7930</epage><pages>7922-7930</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We use a simple model based on the steady-state balance of current flowing by tunneling across a Si-SiO2-metal structure. The recombination current is not taken into account. This model yields analytical expressions for the positions of the quasi-Fermi levels at the Si-SiO2 interface which govern the shape of current-voltage and capacitance-voltage characteristics. In particular, the knee which appears in the capacitance-voltage curves of inverse-biased structures and the corresponding plateau or the break in the slope of the 1/C2 versus applied voltage curve is correctly described. Measuring the slopes before and after the plateau or breaking, which marks the boundary of the tunneling domain, could provide information on the surface states when the surface parameters are known or vice versa. The main feature in the interpretation of the curves obtained is the degree of communication between metal and semiconductor, which is dominated by the tunnel transmission coefficient. The main parameters are therefore the oxide thickness and the minority barrier height for reverse polarization and the majority barrier height for forward bias polarization. It turns out that actual structures never have the predicted values for these barriers but notably lower ones when one assumes a perfect oxide layer. This fact may be due to defects in the oxide layer.</abstract><doi>10.1063/1.356579</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1994-06, Vol.75 (12), p.7922-7930
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_356579
source AIP Digital Archive
title High frequency capacitance behavior of metal-oxide-semiconductor tunnel structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20frequency%20capacitance%20behavior%20of%20metal-oxide-semiconductor%20tunnel%20structures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bredimas,%20Vassiliki&rft.date=1994-06-15&rft.volume=75&rft.issue=12&rft.spage=7922&rft.epage=7930&rft.pages=7922-7930&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.356579&rft_dat=%3Ccrossref%3E10_1063_1_356579%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-ea8c19860db5c12042e10d4e2135f36119027de229bc04b61d2d0b6e0c0362e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true