Loading…

Geometric invariance of mass-like asymptotic invariants

We study coordinate-invariance of some asymptotic invariants, such as the Arnowitt-Deser-Misner mass or the Chruściel–Herzlich momentum, given by an integral over a “boundary at infinity.” When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to ha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2011-05, Vol.52 (5), p.052504-052504-14
Main Author: Michel, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723
cites cdi_FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723
container_end_page 052504-14
container_issue 5
container_start_page 052504
container_title Journal of mathematical physics
container_volume 52
creator Michel, B.
description We study coordinate-invariance of some asymptotic invariants, such as the Arnowitt-Deser-Misner mass or the Chruściel–Herzlich momentum, given by an integral over a “boundary at infinity.” When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a “curious cancellation”). We give a conceptual explanation thereof.
doi_str_mv 10.1063/1.3579137
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3579137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393876631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKsL_8EguFCYmpePSWYjSNEqFNzoOqRpAqmdyZikhf57R1qqIHX1Nueex70IXQIeAa7oHYwoFzVQcYQGgGVdiorLYzTAmJCSMClP0VlKC4wBJGMDJCY2NDZHbwrfrnX0ujW2CK5odErl0n_YQqdN0-WQfyE5naMTp5fJXuzuEL0_Pb6Nn8vp6-Rl_DAtDQPIZU0xGOokzLUjeMYdpbJ21lAKYLTBToCQYJ3UzFQz4BQMEURrTNjMCEHoEF1tvV0MnyubslqEVWz7l0oKzgljFeuhmy1kYkgpWqe66BsdNwqw-p5FgdrN0rPXO6FORi9d7Av7tA8QRngNhPbc_ZZLxmedfWgPS_cbqp8Ne8HtIcE6xJ-w6ubuP_hvhS96xJJK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875524464</pqid></control><display><type>article</type><title>Geometric invariance of mass-like asymptotic invariants</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Michel, B.</creator><creatorcontrib>Michel, B.</creatorcontrib><description>We study coordinate-invariance of some asymptotic invariants, such as the Arnowitt-Deser-Misner mass or the Chruściel–Herzlich momentum, given by an integral over a “boundary at infinity.” When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a “curious cancellation”). We give a conceptual explanation thereof.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3579137</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Asymptotic methods ; Exact sciences and technology ; Geometry ; Integrals ; Mathematical methods in physics ; Mathematics ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2011-05, Vol.52 (5), p.052504-052504-14</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723</citedby><cites>FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3579137$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76125</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24259123$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Michel, B.</creatorcontrib><title>Geometric invariance of mass-like asymptotic invariants</title><title>Journal of mathematical physics</title><description>We study coordinate-invariance of some asymptotic invariants, such as the Arnowitt-Deser-Misner mass or the Chruściel–Herzlich momentum, given by an integral over a “boundary at infinity.” When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a “curious cancellation”). We give a conceptual explanation thereof.</description><subject>Asymptotic methods</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integrals</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKsL_8EguFCYmpePSWYjSNEqFNzoOqRpAqmdyZikhf57R1qqIHX1Nueex70IXQIeAa7oHYwoFzVQcYQGgGVdiorLYzTAmJCSMClP0VlKC4wBJGMDJCY2NDZHbwrfrnX0ujW2CK5odErl0n_YQqdN0-WQfyE5naMTp5fJXuzuEL0_Pb6Nn8vp6-Rl_DAtDQPIZU0xGOokzLUjeMYdpbJ21lAKYLTBToCQYJ3UzFQz4BQMEURrTNjMCEHoEF1tvV0MnyubslqEVWz7l0oKzgljFeuhmy1kYkgpWqe66BsdNwqw-p5FgdrN0rPXO6FORi9d7Av7tA8QRngNhPbc_ZZLxmedfWgPS_cbqp8Ne8HtIcE6xJ-w6ubuP_hvhS96xJJK</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Michel, B.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Geometric invariance of mass-like asymptotic invariants</title><author>Michel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic methods</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integrals</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michel, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric invariance of mass-like asymptotic invariants</atitle><jtitle>Journal of mathematical physics</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>52</volume><issue>5</issue><spage>052504</spage><epage>052504-14</epage><pages>052504-052504-14</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study coordinate-invariance of some asymptotic invariants, such as the Arnowitt-Deser-Misner mass or the Chruściel–Herzlich momentum, given by an integral over a “boundary at infinity.” When changing the coordinates at infinity, some terms in the change of integrand do not decay fast enough to have a vanishing integral at infinity; but they may be gathered in a divergence, thus having vanishing integral over any closed hypersurface. This fact could only be checked after direct calculation (and was called a “curious cancellation”). We give a conceptual explanation thereof.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3579137</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2011-05, Vol.52 (5), p.052504-052504-14
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_3579137
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Asymptotic methods
Exact sciences and technology
Geometry
Integrals
Mathematical methods in physics
Mathematics
Physics
Sciences and techniques of general use
title Geometric invariance of mass-like asymptotic invariants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20invariance%20of%20mass-like%20asymptotic%20invariants&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Michel,%20B.&rft.date=2011-05-01&rft.volume=52&rft.issue=5&rft.spage=052504&rft.epage=052504-14&rft.pages=052504-052504-14&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3579137&rft_dat=%3Cproquest_cross%3E2393876631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-9301c3f81daf20b5f3389fec3311cac0f71781ef8a4c6b1531c272aa024bc7723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=875524464&rft_id=info:pmid/&rfr_iscdi=true