Loading…

Powered oscillator using ignitron switches

A 10-MVA-scale resonant oscillator, powered by a pulse-forming network and switched with a pair of commutating mercury ignitrons, was developed for the MST reversed-field pinch plasma-confinement experiment. A novel feature of this circuit is its commutation mechanism, wherein each turning on of one...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2011-06, Vol.82 (6), p.064701-064701-7
Main Authors: Nonn, P. D., Blair, A. P., McCollam, K. J., Sarff, J. S., Stone, D. R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 10-MVA-scale resonant oscillator, powered by a pulse-forming network and switched with a pair of commutating mercury ignitrons, was developed for the MST reversed-field pinch plasma-confinement experiment. A novel feature of this circuit is its commutation mechanism, wherein each turning on of one ignitron causes a reverse voltage transient that turns off the other. Two of these oscillators are used in oscillating-field current-drive tests, in which they are capable of nearly 1MW net input power to the plasma, with resonant frequencies of a few 100 Hz for pulse durations of a few tens of ms, being precharged for immediate full amplitude. We describe the circuit and its operation, and discuss features that allow reliable, high-current commutation of the ignitrons and exploit their low switching impedance.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.3589266