Loading…
Multiobjective synchronization of coupled systems
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybri...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2011-06, Vol.21 (2), p.025114-025114-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673 |
container_end_page | 025114-12 |
container_issue | 2 |
container_start_page | 025114 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 21 |
creator | Tang, Yang Wang, Zidong Wong, W. K. Kurths, Jürgen Fang, Jian-an |
description | In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks. |
doi_str_mv | 10.1063/1.3595701 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3595701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>884423445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673</originalsourceid><addsrcrecordid>eNp9kFtLwzAYQIMobk4f_AOyN1HozJdb2xdBhjeY-KLPoc0FO9qmNu1g_nqzi4rIhMAXkpNDOAidAp4AFvQKJpSnPMawh4aAkzSKRUL2V3vOIuAYD9CR93OMMRDKD9GAQBxWSoYInvqyK1w-N6orFmbsl7V6a11dfGThuB47O1aub0qjw5XvTOWP0YHNSm9OtnOEXu9uX6YP0ez5_nF6M4sUY6yLiFKpZSA0CEyFVZxTDhhoqnKSJ2CVjgXXQjMcQ8ZVQmmYhjCas0woEdMROt94m9a998Z3siq8MmWZ1cb1XiYJY4QyxgN5sSFV67xvjZVNW1RZu5SA5SqQBLkNFNizrbXPK6O_ya8iAbjeAF4V3brBbtvvdnLdLggudwkWrv15LBtt_4P__v0TvpOQ6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884423445</pqid></control><display><type>article</type><title>Multiobjective synchronization of coupled systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tang, Yang ; Wang, Zidong ; Wong, W. K. ; Kurths, Jürgen ; Fang, Jian-an</creator><creatorcontrib>Tang, Yang ; Wang, Zidong ; Wong, W. K. ; Kurths, Jürgen ; Fang, Jian-an</creatorcontrib><description>In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.3595701</identifier><identifier>PMID: 21721792</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>Chaos (Woodbury, N.Y.), 2011-06, Vol.21 (2), p.025114-025114-12</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673</citedby><cites>FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21721792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Wong, W. K.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Fang, Jian-an</creatorcontrib><title>Multiobjective synchronization of coupled systems</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAYQIMobk4f_AOyN1HozJdb2xdBhjeY-KLPoc0FO9qmNu1g_nqzi4rIhMAXkpNDOAidAp4AFvQKJpSnPMawh4aAkzSKRUL2V3vOIuAYD9CR93OMMRDKD9GAQBxWSoYInvqyK1w-N6orFmbsl7V6a11dfGThuB47O1aub0qjw5XvTOWP0YHNSm9OtnOEXu9uX6YP0ez5_nF6M4sUY6yLiFKpZSA0CEyFVZxTDhhoqnKSJ2CVjgXXQjMcQ8ZVQmmYhjCas0woEdMROt94m9a998Z3siq8MmWZ1cb1XiYJY4QyxgN5sSFV67xvjZVNW1RZu5SA5SqQBLkNFNizrbXPK6O_ya8iAbjeAF4V3brBbtvvdnLdLggudwkWrv15LBtt_4P__v0TvpOQ6A</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Tang, Yang</creator><creator>Wang, Zidong</creator><creator>Wong, W. K.</creator><creator>Kurths, Jürgen</creator><creator>Fang, Jian-an</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>Multiobjective synchronization of coupled systems</title><author>Tang, Yang ; Wang, Zidong ; Wong, W. K. ; Kurths, Jürgen ; Fang, Jian-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Wong, W. K.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Fang, Jian-an</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yang</au><au>Wang, Zidong</au><au>Wong, W. K.</au><au>Kurths, Jürgen</au><au>Fang, Jian-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective synchronization of coupled systems</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>21</volume><issue>2</issue><spage>025114</spage><epage>025114-12</epage><pages>025114-025114-12</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21721792</pmid><doi>10.1063/1.3595701</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2011-06, Vol.21 (2), p.025114-025114-12 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3595701 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Multiobjective synchronization of coupled systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20synchronization%20of%20coupled%20systems&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Tang,%20Yang&rft.date=2011-06-01&rft.volume=21&rft.issue=2&rft.spage=025114&rft.epage=025114-12&rft.pages=025114-025114-12&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.3595701&rft_dat=%3Cproquest_cross%3E884423445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-2cc9f416d16036fc553510139cb2b81fcd765d6d4071a5c83371ae243b4a6c673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884423445&rft_id=info:pmid/21721792&rfr_iscdi=true |