Loading…

Stoichiometry reversal in the growth of thin oxynitride films on Si(100) surfaces

Synchrotron-based O 1s and N 1s photoabsorption spectroscopy, O 1s, N 1s, Si 2p, and valence-band photoelectron spectroscopy (PES), and medium energy ion scattering (MEIS) have been used to determine the composition and thickness of oxynitride films grown in N2O on a Si(100) surface. Core-level phot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1995-12, Vol.78 (11), p.6761-6769
Main Authors: Sutherland, D. G. J., Akatsu, H., Copel, M., Himpsel, F. J., Callcott, T. A., Carlisle, J. A., Ederer, D. L., Jia, J. J., Jimenez, I., Perera, R., Shuh, D. K., Terminello, L. J., Tong, W. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synchrotron-based O 1s and N 1s photoabsorption spectroscopy, O 1s, N 1s, Si 2p, and valence-band photoelectron spectroscopy (PES), and medium energy ion scattering (MEIS) have been used to determine the composition and thickness of oxynitride films grown in N2O on a Si(100) surface. Core-level photoabsorption spectroscopy is shown to be a very sensitive probe capable of measuring surface coverages lower than 0.1 monolayers of N (6.5×1013 N atoms/cm2). Film composition was monitored as a function of growth to demonstrate the stoichiometry reversal from primarily N-terminated surfaces in thin films to nearly pure SiO2 in films thicker than ∼20 Å. A sample with a 60 Å oxynitride film was depth profiled by etching in HF and was shown, via N 1s absorption spectroscopy, to have N segregation within 10 Å above the Si/SiO2 interface. Core-level PES and MEIS were used to study the growth mechanisms of oxynitrides on Si(100) and these data were used to create a schematic phase diagram showing three distinct regions of oxide formation. A critical N2O pressure was discovered at which oxide growth proceeds at over 1000 times its normal rate.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.360500