Loading…
In situ observation of vacancy dynamics during resistance changes of oxide devices
We report that the charged oxygen vacancies are the key element to induce a resistive switching in copper oxide resistive devices and an external bias drifts the charged vacancies at the metal/oxide Schottky interface causing the switching phenomenon by in situ transmission electron microscopy. Nota...
Saved in:
Published in: | Journal of applied physics 2011-09, Vol.110 (5), p.056106-056106-3 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report that the charged oxygen vacancies are the key element to induce a resistive switching in copper oxide resistive devices and an external bias drifts the charged vacancies at the metal/oxide Schottky interface causing the switching phenomenon by
in situ
transmission electron microscopy. Notable results are that the switching polarity is determined by the charge of the vacancies and that the voltage inducing non-volatile switching behavior originates from the Schottky barrier at the interface, which clarifies the origin of resistive switching and provides a design strategy for oxide resistive devices. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3626816 |