Loading…

Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB

The tunneling magnetoresistance and perpendicular magnetic anisotropy in CoFeB(1.1-1.2 nm)/MgO/CoFeB(1.2-1.7 nm) junctions were found to be very sensitively dependent on annealing time. During annealing at a given temperature, decay of magnetoresistance occurs much earlier compared to junctions with...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2011-09, Vol.99 (10), p.102502-102502-3
Main Authors: Wang, Wei-Gang, Hageman, Stephen, Li, Mingen, Huang, Sunxiang, Kou, Xiaoming, Fan, Xin, Xiao, John Q., Chien, C. L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tunneling magnetoresistance and perpendicular magnetic anisotropy in CoFeB(1.1-1.2 nm)/MgO/CoFeB(1.2-1.7 nm) junctions were found to be very sensitively dependent on annealing time. During annealing at a given temperature, decay of magnetoresistance occurs much earlier compared to junctions with in-plane magnetic anisotropy. Through a rapid thermal annealing study, the decrease of magnetoresistance is found to be associated with the degradation of perpendicular anisotropy, instead of impurity diffusion as observed in common in-plane junctions. The origin of the evolution of perpendicular anisotropy as well as possible means to further enhance tunneling magnetoresistance is discussed.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3634026