Loading…

Spin-flop driven magneto-dielectric effect in Co4Nb2O9

Co4Nb2O9 becomes antiferromagnetic (AFM) below 27.4 K with a spin-flop transition at a critical field, Hc, of 12 kOe. Room-temperature dielectric properties are dominated by finite electronic conductivity. Below 125 K, the charge carriers are frozen-out and the dielectric constant is controlled by t...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2011-09, Vol.99 (13)
Main Authors: Kolodiazhnyi, T., Sakurai, H., Vittayakorn, N.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Co4Nb2O9 becomes antiferromagnetic (AFM) below 27.4 K with a spin-flop transition at a critical field, Hc, of 12 kOe. Room-temperature dielectric properties are dominated by finite electronic conductivity. Below 125 K, the charge carriers are frozen-out and the dielectric constant is controlled by the lattice phonons. A large (12%) spin flop-driven enhancement in dielectric constant is found in the very narrow temperature interval (Δ T = 1.6 K) in the vicinity of the AFM phase transition. Magneto-dielectric anomaly shows low-frequency dispersion; therefore, the H-induced changes in the phonon eigenfrequencies are unlikely. Other possible reasons for unusual magneto-dielectric effect in Co4Nb2O9 are discussed.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3645017