Loading…

Terahertz and infrared studies of antiferroelectric phase transition in multiferroic Bi0.85Nd0.15FeO3

High-frequency dielectric studies of Bi0.85Nd0.15FeO3 ceramics performed betweeen 100 and 900 K reveal hardening of most polar phonons on cooling below antiferroelectric phase transition, which occurs near 600 K. Moreover, a strong THz dielectric relaxation is seen in paraelectric phase. Its relaxat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2011-10, Vol.110 (7)
Main Authors: Goian, V., Kamba, S., Greicius, S., Nuzhnyy, D., Karimi, S., Reaney, I. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-frequency dielectric studies of Bi0.85Nd0.15FeO3 ceramics performed betweeen 100 and 900 K reveal hardening of most polar phonons on cooling below antiferroelectric phase transition, which occurs near 600 K. Moreover, a strong THz dielectric relaxation is seen in paraelectric phase. Its relaxation frequency softens on cooling towards TC ≈ 600 K, its dielectric strength simultaneously decreases, and finally the relaxation disappears from the spectra below 450 K. Both phonon and dielectric relaxation behavior are responsible for a decrease in the dielectric permittivity at the antiferroelectric phase transition. Origin of unusual strong THz dielectric relaxation in paraelectric phase is discussed. Bi0.85Nd0.15FeO3 structure lies on the phase boundary between polar rhombohedral and non-polar orthorhombic phase and owing to this, the polarization rotation and polarization extension can enhance the piezoelectric response of this system. Similarities and discrepancies with lead-based piezoelectric perovskites, exhibiting morphotrophic phase boundary between two ferroelectric phases, are discussed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3650241