Loading…

Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles

Conical convergent-divergent (CCD) nozzles represent an important category of supersonic jet-engine nozzles which require variable throat areas and variable exit areas to adapt to a range of operating conditions. CCD nozzles with design Mach numbers of 1.3, 1.5, and 1.65 are examined experimentally...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2011-11, Vol.23 (11), p.116102-116102-13
Main Authors: Munday, D., Gutmark, E., Liu, J., Kailasanath, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conical convergent-divergent (CCD) nozzles represent an important category of supersonic jet-engine nozzles which require variable throat areas and variable exit areas to adapt to a range of operating conditions. CCD nozzles with design Mach numbers of 1.3, 1.5, and 1.65 are examined experimentally over a range of fully expanded Mach numbers from 1.22 to 1.71. The characteristics of the flow and acoustic fields from these nozzles are explored. Shadowgraph, Particle Image Velocimetry, far-field and near-field acoustic surveys are presented. Results of a Monotonically Integrated Large Eddy Simulation are presented for the Mach 1.5 nozzle at an underexpanded condition. The agreement between simulations and measurements is excellent. It is shown that these nozzles differ from traditional smoothly contoured method-of-characteristics nozzles in that they never achieve a shock free condition. Furthermore it is shown that these nozzles produce a "double diamond" pattern in which two sets of shock diamonds are generated with an axial displacement between them. The cause of this phenomenon is explored. It is further shown that as a consequence they are never free from shock-associated noise even when operated at perfect expansion. In spite of this difference, it is found that CCD nozzles behave like traditional convergent-divergent nozzles in that they produce the same shock-cell size, broadband shock-associated noise peak frequency, and screech frequency as traditional convergent-divergent nozzles. The apparent source regions for mixing noise, broadband shock associated noise and screech are all similar to those from traditional convergent-divergent nozzles.
ISSN:1070-6631
1089-7666
DOI:10.1063/1.3657824