Loading…

Extremely low temperature formation of silicon dioxide on gallium arsenide

This article demonstrates the growth of silicon dioxide (SiO2) on a gallium arsenide (GaAs) substrate by use of the liquid phase deposition (LPD) method at extremely low temperature (∼40 °C). This method cannot only grow SiO2 but it can also obtain good quality and reliability due to the suppression...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1997-12, Vol.82 (11), p.5788-5792
Main Authors: Houng, M. P., Huang, C. J., Wang, Y. H., Wang, N. F., Chang, W. J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3
cites cdi_FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3
container_end_page 5792
container_issue 11
container_start_page 5788
container_title Journal of applied physics
container_volume 82
creator Houng, M. P.
Huang, C. J.
Wang, Y. H.
Wang, N. F.
Chang, W. J.
description This article demonstrates the growth of silicon dioxide (SiO2) on a gallium arsenide (GaAs) substrate by use of the liquid phase deposition (LPD) method at extremely low temperature (∼40 °C). This method cannot only grow SiO2 but it can also obtain good quality and reliability due to the suppression of interdiffusion in such a low temperature process. The deposition rate of LPD-SiO2 on GaAs is up to 1265 Å/h. The refractive index of the LPD-SiO2 film on GaAs is about 1.42 with growth at 40 °C. When the LPD-SiO2 film on the GaAs substrate is used to fabricate a metal–oxide–semiconductor capacitor with a device area of 0.3 cm2, the surface charge density (Qss/q) is about 3.7×1011 cm−2 and the leakage current is 43.3 pA at −5 V. A proposed mechanism for the LPD of SiO2 on GaAs is also presented.
doi_str_mv 10.1063/1.366445
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_366445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_366445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoWKfgT8ijL533Jk2bPMqYThn4os8lTW8kkq4j6XD791bm0_k4D4fDx9g9whKhlo-4lHVdVeqCFQjalI1ScMkKAIGlNo25Zjc5fwMgamkK9rY-TokGiicexx8-0bCnZKdDIu7HNNgpjDs-ep5DDG7GPozH0BOf8cvGGA4DtynTbu5u2ZW3MdPdfy7Y5_P6Y7Upt-8vr6unbemEwalECQgVGIdSSOOJ_HwLlcVOO2VASaEdQVNJdKpp-lpI6Jw21PUgG4GdXLCH865LY86JfLtPYbDp1CK0fw5abM8O5C8-lE3R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extremely low temperature formation of silicon dioxide on gallium arsenide</title><source>AIP Digital Archive</source><creator>Houng, M. P. ; Huang, C. J. ; Wang, Y. H. ; Wang, N. F. ; Chang, W. J.</creator><creatorcontrib>Houng, M. P. ; Huang, C. J. ; Wang, Y. H. ; Wang, N. F. ; Chang, W. J.</creatorcontrib><description>This article demonstrates the growth of silicon dioxide (SiO2) on a gallium arsenide (GaAs) substrate by use of the liquid phase deposition (LPD) method at extremely low temperature (∼40 °C). This method cannot only grow SiO2 but it can also obtain good quality and reliability due to the suppression of interdiffusion in such a low temperature process. The deposition rate of LPD-SiO2 on GaAs is up to 1265 Å/h. The refractive index of the LPD-SiO2 film on GaAs is about 1.42 with growth at 40 °C. When the LPD-SiO2 film on the GaAs substrate is used to fabricate a metal–oxide–semiconductor capacitor with a device area of 0.3 cm2, the surface charge density (Qss/q) is about 3.7×1011 cm−2 and the leakage current is 43.3 pA at −5 V. A proposed mechanism for the LPD of SiO2 on GaAs is also presented.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.366445</identifier><language>eng</language><ispartof>Journal of applied physics, 1997-12, Vol.82 (11), p.5788-5792</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3</citedby><cites>FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Houng, M. P.</creatorcontrib><creatorcontrib>Huang, C. J.</creatorcontrib><creatorcontrib>Wang, Y. H.</creatorcontrib><creatorcontrib>Wang, N. F.</creatorcontrib><creatorcontrib>Chang, W. J.</creatorcontrib><title>Extremely low temperature formation of silicon dioxide on gallium arsenide</title><title>Journal of applied physics</title><description>This article demonstrates the growth of silicon dioxide (SiO2) on a gallium arsenide (GaAs) substrate by use of the liquid phase deposition (LPD) method at extremely low temperature (∼40 °C). This method cannot only grow SiO2 but it can also obtain good quality and reliability due to the suppression of interdiffusion in such a low temperature process. The deposition rate of LPD-SiO2 on GaAs is up to 1265 Å/h. The refractive index of the LPD-SiO2 film on GaAs is about 1.42 with growth at 40 °C. When the LPD-SiO2 film on the GaAs substrate is used to fabricate a metal–oxide–semiconductor capacitor with a device area of 0.3 cm2, the surface charge density (Qss/q) is about 3.7×1011 cm−2 and the leakage current is 43.3 pA at −5 V. A proposed mechanism for the LPD of SiO2 on GaAs is also presented.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoWKfgT8ijL533Jk2bPMqYThn4os8lTW8kkq4j6XD791bm0_k4D4fDx9g9whKhlo-4lHVdVeqCFQjalI1ScMkKAIGlNo25Zjc5fwMgamkK9rY-TokGiicexx8-0bCnZKdDIu7HNNgpjDs-ep5DDG7GPozH0BOf8cvGGA4DtynTbu5u2ZW3MdPdfy7Y5_P6Y7Upt-8vr6unbemEwalECQgVGIdSSOOJ_HwLlcVOO2VASaEdQVNJdKpp-lpI6Jw21PUgG4GdXLCH865LY86JfLtPYbDp1CK0fw5abM8O5C8-lE3R</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Houng, M. P.</creator><creator>Huang, C. J.</creator><creator>Wang, Y. H.</creator><creator>Wang, N. F.</creator><creator>Chang, W. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19971201</creationdate><title>Extremely low temperature formation of silicon dioxide on gallium arsenide</title><author>Houng, M. P. ; Huang, C. J. ; Wang, Y. H. ; Wang, N. F. ; Chang, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houng, M. P.</creatorcontrib><creatorcontrib>Huang, C. J.</creatorcontrib><creatorcontrib>Wang, Y. H.</creatorcontrib><creatorcontrib>Wang, N. F.</creatorcontrib><creatorcontrib>Chang, W. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houng, M. P.</au><au>Huang, C. J.</au><au>Wang, Y. H.</au><au>Wang, N. F.</au><au>Chang, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely low temperature formation of silicon dioxide on gallium arsenide</atitle><jtitle>Journal of applied physics</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>82</volume><issue>11</issue><spage>5788</spage><epage>5792</epage><pages>5788-5792</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>This article demonstrates the growth of silicon dioxide (SiO2) on a gallium arsenide (GaAs) substrate by use of the liquid phase deposition (LPD) method at extremely low temperature (∼40 °C). This method cannot only grow SiO2 but it can also obtain good quality and reliability due to the suppression of interdiffusion in such a low temperature process. The deposition rate of LPD-SiO2 on GaAs is up to 1265 Å/h. The refractive index of the LPD-SiO2 film on GaAs is about 1.42 with growth at 40 °C. When the LPD-SiO2 film on the GaAs substrate is used to fabricate a metal–oxide–semiconductor capacitor with a device area of 0.3 cm2, the surface charge density (Qss/q) is about 3.7×1011 cm−2 and the leakage current is 43.3 pA at −5 V. A proposed mechanism for the LPD of SiO2 on GaAs is also presented.</abstract><doi>10.1063/1.366445</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1997-12, Vol.82 (11), p.5788-5792
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_366445
source AIP Digital Archive
title Extremely low temperature formation of silicon dioxide on gallium arsenide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20low%20temperature%20formation%20of%20silicon%20dioxide%20on%20gallium%20arsenide&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Houng,%20M.%20P.&rft.date=1997-12-01&rft.volume=82&rft.issue=11&rft.spage=5788&rft.epage=5792&rft.pages=5788-5792&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.366445&rft_dat=%3Ccrossref%3E10_1063_1_366445%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-13010409c13239feef89715a1b8c5905328ce07431c577d6230bc89ebd03721b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true