Loading…

Carbon self-organization in the ternary Si1−x−yGexCy alloy

This article demonstrates for the first time the possible self-ordering of carbon in Si1−x−yGexCy thin films pseudomorphically grown on silicon. Germanium and carbon atomic distributions have been studied for a C-rich Si0.9−yGe0.1Cy heterostructure using high-resolution transmission electron microsc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1998-05, Vol.83 (10), p.5251-5257
Main Authors: Guedj, C., Portier, X., Hairie, A., Bouchier, D., Calvarin, G., Piriou, B., Gautier, B., Dupuy, J. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93
cites cdi_FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93
container_end_page 5257
container_issue 10
container_start_page 5251
container_title Journal of applied physics
container_volume 83
creator Guedj, C.
Portier, X.
Hairie, A.
Bouchier, D.
Calvarin, G.
Piriou, B.
Gautier, B.
Dupuy, J. C.
description This article demonstrates for the first time the possible self-ordering of carbon in Si1−x−yGexCy thin films pseudomorphically grown on silicon. Germanium and carbon atomic distributions have been studied for a C-rich Si0.9−yGe0.1Cy heterostructure using high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction, Raman spectrometry, and secondary ion mass spectrometry (SIMS). HRTEM images show the spontaneous formation of carbon-rich tilted sublattices and local germanium fluctuations, despite constant growth parameters. X-ray diffraction confirms this thin sublayers formation. A complementary insight into local ordering effects around C is obtained by Raman spectroscopy. A new model for perpendicular lattice parameter reduction is proposed. It involves C atoms mostly in third-nearest-neighbor positions and the local formation of a distorted CSi3 graphitic arrangement. In these C-rich sublayers, the perpendicular lattice mismatch to silicon is as low as −0.014. This aperiodic structure remains highly distorted and a statistical description of these strain fluctuations is detailed. The atomistic configuration of these δ layers indicates the likely contribution of surface steps during the growth, while SIMS measurements hint at the probable involvement of carbon interstitials to explain this ordering. For technological applications, this self-organization of carbon is promising for the ultrashallow junction challenge. These carbon-rich embedded layers can be considered as quantum wells, etch stops or very thin barriers against transient enhanced diffusion.
doi_str_mv 10.1063/1.367347
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_367347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_367347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93</originalsourceid><addsrcrecordid>eNotj81KxDAUhYMoWEfBR-jSTcZ789dkI0jRURhwoa5LmiYaqa0kXUx9Atc-ok9iZVwcDpzFx_kIOUdYIyh-iWuuKi6qA1IgaEMrKeGQFAAMqTaVOSYnOb8BIGpuCnJV29SOQ5l9H-iYXuwQP-0UlyUO5fTqy8mnwaa5fIz48_W9WzJv_K6eS9v343xKjoLtsz_77xV5vr15qu_o9mFzX19vqWNMTlRapdrAtA5Od15bZCIwYBCErDrruLItk8IIKR0qZFzwwEQnlJZGeBkMX5GLPdelMefkQ_OR4vvyq0Fo_rwbbPbe_BfHe0rI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon self-organization in the ternary Si1−x−yGexCy alloy</title><source>AIP Digital Archive</source><creator>Guedj, C. ; Portier, X. ; Hairie, A. ; Bouchier, D. ; Calvarin, G. ; Piriou, B. ; Gautier, B. ; Dupuy, J. C.</creator><creatorcontrib>Guedj, C. ; Portier, X. ; Hairie, A. ; Bouchier, D. ; Calvarin, G. ; Piriou, B. ; Gautier, B. ; Dupuy, J. C.</creatorcontrib><description>This article demonstrates for the first time the possible self-ordering of carbon in Si1−x−yGexCy thin films pseudomorphically grown on silicon. Germanium and carbon atomic distributions have been studied for a C-rich Si0.9−yGe0.1Cy heterostructure using high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction, Raman spectrometry, and secondary ion mass spectrometry (SIMS). HRTEM images show the spontaneous formation of carbon-rich tilted sublattices and local germanium fluctuations, despite constant growth parameters. X-ray diffraction confirms this thin sublayers formation. A complementary insight into local ordering effects around C is obtained by Raman spectroscopy. A new model for perpendicular lattice parameter reduction is proposed. It involves C atoms mostly in third-nearest-neighbor positions and the local formation of a distorted CSi3 graphitic arrangement. In these C-rich sublayers, the perpendicular lattice mismatch to silicon is as low as −0.014. This aperiodic structure remains highly distorted and a statistical description of these strain fluctuations is detailed. The atomistic configuration of these δ layers indicates the likely contribution of surface steps during the growth, while SIMS measurements hint at the probable involvement of carbon interstitials to explain this ordering. For technological applications, this self-organization of carbon is promising for the ultrashallow junction challenge. These carbon-rich embedded layers can be considered as quantum wells, etch stops or very thin barriers against transient enhanced diffusion.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.367347</identifier><language>eng</language><ispartof>Journal of applied physics, 1998-05, Vol.83 (10), p.5251-5257</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93</citedby><cites>FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Guedj, C.</creatorcontrib><creatorcontrib>Portier, X.</creatorcontrib><creatorcontrib>Hairie, A.</creatorcontrib><creatorcontrib>Bouchier, D.</creatorcontrib><creatorcontrib>Calvarin, G.</creatorcontrib><creatorcontrib>Piriou, B.</creatorcontrib><creatorcontrib>Gautier, B.</creatorcontrib><creatorcontrib>Dupuy, J. C.</creatorcontrib><title>Carbon self-organization in the ternary Si1−x−yGexCy alloy</title><title>Journal of applied physics</title><description>This article demonstrates for the first time the possible self-ordering of carbon in Si1−x−yGexCy thin films pseudomorphically grown on silicon. Germanium and carbon atomic distributions have been studied for a C-rich Si0.9−yGe0.1Cy heterostructure using high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction, Raman spectrometry, and secondary ion mass spectrometry (SIMS). HRTEM images show the spontaneous formation of carbon-rich tilted sublattices and local germanium fluctuations, despite constant growth parameters. X-ray diffraction confirms this thin sublayers formation. A complementary insight into local ordering effects around C is obtained by Raman spectroscopy. A new model for perpendicular lattice parameter reduction is proposed. It involves C atoms mostly in third-nearest-neighbor positions and the local formation of a distorted CSi3 graphitic arrangement. In these C-rich sublayers, the perpendicular lattice mismatch to silicon is as low as −0.014. This aperiodic structure remains highly distorted and a statistical description of these strain fluctuations is detailed. The atomistic configuration of these δ layers indicates the likely contribution of surface steps during the growth, while SIMS measurements hint at the probable involvement of carbon interstitials to explain this ordering. For technological applications, this self-organization of carbon is promising for the ultrashallow junction challenge. These carbon-rich embedded layers can be considered as quantum wells, etch stops or very thin barriers against transient enhanced diffusion.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAUhYMoWEfBR-jSTcZ789dkI0jRURhwoa5LmiYaqa0kXUx9Atc-ok9iZVwcDpzFx_kIOUdYIyh-iWuuKi6qA1IgaEMrKeGQFAAMqTaVOSYnOb8BIGpuCnJV29SOQ5l9H-iYXuwQP-0UlyUO5fTqy8mnwaa5fIz48_W9WzJv_K6eS9v343xKjoLtsz_77xV5vr15qu_o9mFzX19vqWNMTlRapdrAtA5Od15bZCIwYBCErDrruLItk8IIKR0qZFzwwEQnlJZGeBkMX5GLPdelMefkQ_OR4vvyq0Fo_rwbbPbe_BfHe0rI</recordid><startdate>19980515</startdate><enddate>19980515</enddate><creator>Guedj, C.</creator><creator>Portier, X.</creator><creator>Hairie, A.</creator><creator>Bouchier, D.</creator><creator>Calvarin, G.</creator><creator>Piriou, B.</creator><creator>Gautier, B.</creator><creator>Dupuy, J. C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980515</creationdate><title>Carbon self-organization in the ternary Si1−x−yGexCy alloy</title><author>Guedj, C. ; Portier, X. ; Hairie, A. ; Bouchier, D. ; Calvarin, G. ; Piriou, B. ; Gautier, B. ; Dupuy, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guedj, C.</creatorcontrib><creatorcontrib>Portier, X.</creatorcontrib><creatorcontrib>Hairie, A.</creatorcontrib><creatorcontrib>Bouchier, D.</creatorcontrib><creatorcontrib>Calvarin, G.</creatorcontrib><creatorcontrib>Piriou, B.</creatorcontrib><creatorcontrib>Gautier, B.</creatorcontrib><creatorcontrib>Dupuy, J. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guedj, C.</au><au>Portier, X.</au><au>Hairie, A.</au><au>Bouchier, D.</au><au>Calvarin, G.</au><au>Piriou, B.</au><au>Gautier, B.</au><au>Dupuy, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon self-organization in the ternary Si1−x−yGexCy alloy</atitle><jtitle>Journal of applied physics</jtitle><date>1998-05-15</date><risdate>1998</risdate><volume>83</volume><issue>10</issue><spage>5251</spage><epage>5257</epage><pages>5251-5257</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>This article demonstrates for the first time the possible self-ordering of carbon in Si1−x−yGexCy thin films pseudomorphically grown on silicon. Germanium and carbon atomic distributions have been studied for a C-rich Si0.9−yGe0.1Cy heterostructure using high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction, Raman spectrometry, and secondary ion mass spectrometry (SIMS). HRTEM images show the spontaneous formation of carbon-rich tilted sublattices and local germanium fluctuations, despite constant growth parameters. X-ray diffraction confirms this thin sublayers formation. A complementary insight into local ordering effects around C is obtained by Raman spectroscopy. A new model for perpendicular lattice parameter reduction is proposed. It involves C atoms mostly in third-nearest-neighbor positions and the local formation of a distorted CSi3 graphitic arrangement. In these C-rich sublayers, the perpendicular lattice mismatch to silicon is as low as −0.014. This aperiodic structure remains highly distorted and a statistical description of these strain fluctuations is detailed. The atomistic configuration of these δ layers indicates the likely contribution of surface steps during the growth, while SIMS measurements hint at the probable involvement of carbon interstitials to explain this ordering. For technological applications, this self-organization of carbon is promising for the ultrashallow junction challenge. These carbon-rich embedded layers can be considered as quantum wells, etch stops or very thin barriers against transient enhanced diffusion.</abstract><doi>10.1063/1.367347</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1998-05, Vol.83 (10), p.5251-5257
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_367347
source AIP Digital Archive
title Carbon self-organization in the ternary Si1−x−yGexCy alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20self-organization%20in%20the%20ternary%20Si1%E2%88%92x%E2%88%92yGexCy%20alloy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Guedj,%20C.&rft.date=1998-05-15&rft.volume=83&rft.issue=10&rft.spage=5251&rft.epage=5257&rft.pages=5251-5257&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.367347&rft_dat=%3Ccrossref%3E10_1063_1_367347%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-5a66bf288fc8de8a124f2020f457dac36ab2549455c1612343f24d468594e5f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true