Loading…
Temperature-dependent ballistic transport in a channel with length below the scattering-limited mean free path
The temperature-dependent ballistic transport, using nonequilibrium Arora distribution function (NEADF), is shown to result in mobility degradation with reduction in channel length, in direct contrast to expectation of a collision-free transport. The ballistic mean free path (mfp) is much higher tha...
Saved in:
Published in: | Journal of applied physics 2012-03, Vol.111 (5), p.054301-054301-6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temperature-dependent ballistic transport, using nonequilibrium Arora distribution function (NEADF), is shown to result in mobility degradation with reduction in channel length, in direct contrast to expectation of a collision-free transport. The ballistic mean free path (mfp) is much higher than the scattering-limited long-channel mfp, yet the mobility is amazingly lower. High-field effects, converting stochastic velocity vectors to streamlined ones, are found to be negligible when the applied voltage is less than the critical voltage appropriate for a ballistic mfp, especially at cryogenic temperatures. Excellent agreement with the experimental data on a metal-oxide-semiconductor field-effect transistor is obtained. The applications of NEADF are shown to cover a wide spectrum, covering regimes from the scattering-limited to ballistic, from nondegenerate to degenerate, from nanowire to bulk, from low- to high-temperature, and from a low electric field to an extremely high electric field. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3688339 |