Loading…

Temperature-dependent ballistic transport in a channel with length below the scattering-limited mean free path

The temperature-dependent ballistic transport, using nonequilibrium Arora distribution function (NEADF), is shown to result in mobility degradation with reduction in channel length, in direct contrast to expectation of a collision-free transport. The ballistic mean free path (mfp) is much higher tha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2012-03, Vol.111 (5), p.054301-054301-6
Main Authors: Arora, Vijay K., Zainal Abidin, Mastura Shafinaz, Tan, Michael L. P., Riyadi, Munawar A.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The temperature-dependent ballistic transport, using nonequilibrium Arora distribution function (NEADF), is shown to result in mobility degradation with reduction in channel length, in direct contrast to expectation of a collision-free transport. The ballistic mean free path (mfp) is much higher than the scattering-limited long-channel mfp, yet the mobility is amazingly lower. High-field effects, converting stochastic velocity vectors to streamlined ones, are found to be negligible when the applied voltage is less than the critical voltage appropriate for a ballistic mfp, especially at cryogenic temperatures. Excellent agreement with the experimental data on a metal-oxide-semiconductor field-effect transistor is obtained. The applications of NEADF are shown to cover a wide spectrum, covering regimes from the scattering-limited to ballistic, from nondegenerate to degenerate, from nanowire to bulk, from low- to high-temperature, and from a low electric field to an extremely high electric field.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3688339