Loading…

Magnetic properties of RFe11.3Nb0.7 compounds (R=rare earth)

Structural and magnetic properties of RFe11.3Nb0.7 compounds with rare-earth elements (R=Y, Sm, Gd, Tb, Dy, Ho, and Er) have been investigated. The Curie temperature increases for R=Sm–Gd, then decreases from R=Gd to Er. In the compound with R=Tb, with increasing temperature, a spin reorientation fr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1999-04, Vol.85 (8), p.4684-4686
Main Authors: Wang, J. L., Yang, F. M., Fuquan, B., Wang, F. W., Tang, N., Brück, E., de Boer, F. R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural and magnetic properties of RFe11.3Nb0.7 compounds with rare-earth elements (R=Y, Sm, Gd, Tb, Dy, Ho, and Er) have been investigated. The Curie temperature increases for R=Sm–Gd, then decreases from R=Gd to Er. In the compound with R=Tb, with increasing temperature, a spin reorientation from an easy magnetization direction in the plane to an easy cone occurs at 365 K. In the compound with R=Er, a spin reorientation from easy plane to easy axis is found at about 40 K. Two spin reorientations take place in the compound with R=Dy, from easy plane to a complex structure at 125 K and from complex structure to easy axis at 210 K. At room temperature, the easy magnetization direction is along the c axis for R=Y, Sm, Gd, Dy, Ho, and Er, and in the plane for R=Tb. Studies of the magnetic anisotropy in YFe11.3Nb0.7 and GdFe11.3Nb0.7 point out that the Fe sublattice anisotropy is of easy axis type. In HoFe11.3Nb0.7, a first-order magnetization process takes place below 150 K when an external magnetic field is applied along the hard magnetization direction. The exchange-interaction constants JR–Fe decreases with increasing atomic number of R, as is generally found in rare-earth transition-metal compounds.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.370447