Loading…
Charge trapping and defect segregation in quartz
Irradiation induced charging of wide band gap materials may significantly influence the development of radiation damage and associated defect migration. Charge trapped at irradiation induced and/or pre-existing defects induces a localized electric field within the irradiated volume of specimen. The...
Saved in:
Published in: | Journal of applied physics 1999-07, Vol.86 (1), p.205-208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Irradiation induced charging of wide band gap materials may significantly influence the development of radiation damage and associated defect migration. Charge trapped at irradiation induced and/or pre-existing defects induces a localized electric field within the irradiated volume of specimen. The powerful combination of cathodoluminescence microanalysis and electric force microscopy allows direct monitoring of the development of the irradiation induced charge distribution and its effect on the microscopic spatial segregation of defects. These techniques have been used to demonstrate the important influence of the induced local field on the microscopic defect structure of quartz. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.370718 |