Loading…

Defects in Ge+-preamorphized silicon

This work studied the morphology and annealing behaviors of extended defects in Si subjected to various Ge+ preamorphization and BF2+ implantation conditions. The extended defects formed were near the specimen surface when Ge+ implantation energy and dose amount were low. During subsequent annealing...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1999-11, Vol.86 (10), p.5399-5406
Main Authors: Chen, Peng-Shiu, Hsieh, T. E., Hwang, Yih-Chyang, Chu, Chih-Hsun
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work studied the morphology and annealing behaviors of extended defects in Si subjected to various Ge+ preamorphization and BF2+ implantation conditions. The extended defects formed were near the specimen surface when Ge+ implantation energy and dose amount were low. During subsequent annealing, the end-of-range (EOR) loops were enlarged and then moved out of the specimen. High energy/low dose Ge+ implantation generated a damaged layer which initially transformed into a wide zone containing dislocation loops and rodlike defects in the annealed specimen. As the annealing proceeded, the width of defective zone gradually shrunk so that most of the extended defects could be annihilated by defect rejection/recombination process. In addition to the category II defects found in previous investigations, hairpin dislocations emerged in high energy/high dose Ge+-implanted specimens. In this specimen, rodlike defects and hairpin dislocations could be removed by annealing, while the EOR loops became relatively inert so that their removal would require high temperatures and/or long annealing times. Microwave plasma surface treatment was also carried out to form a nitride layer on specimen surface. Experimental results indicate that in addition to effectively reducing the size of EOR loops, surface nitridation might serve as a vacancy source injecting vacancies into Si to annihilate the interstitials bounded by dislocation loops. Reduction in the defect size was pronounced when bias voltage was added to the plasma process. However, radiation damage might occur with too high of a bias voltage.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.371537