Loading…

A variable interval variable step method for the solution of linear second order coupled differential equations

A new method for the numerical solution of the linear second order coupled differential equations of quantum scattering theory is presented. A formal framework is set up which makes clear the interrelationships between many currently used integration methods. Our variable interval variable step meth...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1980-08, Vol.73 (4), p.1757-1764
Main Authors: Parker, Gregory A., Schmalz, Thomas G., Light, John C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03
cites cdi_FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03
container_end_page 1764
container_issue 4
container_start_page 1757
container_title The Journal of chemical physics
container_volume 73
creator Parker, Gregory A.
Schmalz, Thomas G.
Light, John C.
description A new method for the numerical solution of the linear second order coupled differential equations of quantum scattering theory is presented. A formal framework is set up which makes clear the interrelationships between many currently used integration methods. Our variable interval variable step method is designed to reduce the total number of matrix (N3) operations required for solution at a given accuracy. The method is tested on several problems and is shown to be uniformly and rapidly convergent, stable, and significantly faster than previous methods.
doi_str_mv 10.1063/1.440311
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_440311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_440311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoOFbBn5Clm6n3JvNolqX4goIbXQ-Z5IZGppOaZAr-e6dUkLM48MH5Foexe4QlQiMfcVlVIBEvWIGwUmXbKLhkBYDAUjXQXLOblL4AAFtRFSys-VFHr_uBuB8zxaMe_knKdOB7yrtguQuR593MwjBlH0YeHB_8SDryRCaMlodoKXITpsNAllvvHEUas5-N9D3p0yjdsiunh0R3f71gn89PH5vXcvv-8rZZb0sjapFLoTQZa3o5RzRY18q2llogJXWvZFNLaQyCNlA56ahC29JqXgq0ICsNcsEezl4TQ0qRXHeIfq_jT4fQnY7qsDsfJX8B0e1ciA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A variable interval variable step method for the solution of linear second order coupled differential equations</title><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Parker, Gregory A. ; Schmalz, Thomas G. ; Light, John C.</creator><creatorcontrib>Parker, Gregory A. ; Schmalz, Thomas G. ; Light, John C.</creatorcontrib><description>A new method for the numerical solution of the linear second order coupled differential equations of quantum scattering theory is presented. A formal framework is set up which makes clear the interrelationships between many currently used integration methods. Our variable interval variable step method is designed to reduce the total number of matrix (N3) operations required for solution at a given accuracy. The method is tested on several problems and is shown to be uniformly and rapidly convergent, stable, and significantly faster than previous methods.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.440311</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1980-08, Vol.73 (4), p.1757-1764</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03</citedby><cites>FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Parker, Gregory A.</creatorcontrib><creatorcontrib>Schmalz, Thomas G.</creatorcontrib><creatorcontrib>Light, John C.</creatorcontrib><title>A variable interval variable step method for the solution of linear second order coupled differential equations</title><title>The Journal of chemical physics</title><description>A new method for the numerical solution of the linear second order coupled differential equations of quantum scattering theory is presented. A formal framework is set up which makes clear the interrelationships between many currently used integration methods. Our variable interval variable step method is designed to reduce the total number of matrix (N3) operations required for solution at a given accuracy. The method is tested on several problems and is shown to be uniformly and rapidly convergent, stable, and significantly faster than previous methods.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoOFbBn5Clm6n3JvNolqX4goIbXQ-Z5IZGppOaZAr-e6dUkLM48MH5Foexe4QlQiMfcVlVIBEvWIGwUmXbKLhkBYDAUjXQXLOblL4AAFtRFSys-VFHr_uBuB8zxaMe_knKdOB7yrtguQuR593MwjBlH0YeHB_8SDryRCaMlodoKXITpsNAllvvHEUas5-N9D3p0yjdsiunh0R3f71gn89PH5vXcvv-8rZZb0sjapFLoTQZa3o5RzRY18q2llogJXWvZFNLaQyCNlA56ahC29JqXgq0ICsNcsEezl4TQ0qRXHeIfq_jT4fQnY7qsDsfJX8B0e1ciA</recordid><startdate>19800815</startdate><enddate>19800815</enddate><creator>Parker, Gregory A.</creator><creator>Schmalz, Thomas G.</creator><creator>Light, John C.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19800815</creationdate><title>A variable interval variable step method for the solution of linear second order coupled differential equations</title><author>Parker, Gregory A. ; Schmalz, Thomas G. ; Light, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Gregory A.</creatorcontrib><creatorcontrib>Schmalz, Thomas G.</creatorcontrib><creatorcontrib>Light, John C.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Gregory A.</au><au>Schmalz, Thomas G.</au><au>Light, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variable interval variable step method for the solution of linear second order coupled differential equations</atitle><jtitle>The Journal of chemical physics</jtitle><date>1980-08-15</date><risdate>1980</risdate><volume>73</volume><issue>4</issue><spage>1757</spage><epage>1764</epage><pages>1757-1764</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A new method for the numerical solution of the linear second order coupled differential equations of quantum scattering theory is presented. A formal framework is set up which makes clear the interrelationships between many currently used integration methods. Our variable interval variable step method is designed to reduce the total number of matrix (N3) operations required for solution at a given accuracy. The method is tested on several problems and is shown to be uniformly and rapidly convergent, stable, and significantly faster than previous methods.</abstract><doi>10.1063/1.440311</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1980-08, Vol.73 (4), p.1757-1764
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_440311
source AIP_美国物理联合会现刊(与NSTL共建)
title A variable interval variable step method for the solution of linear second order coupled differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variable%20interval%20variable%20step%20method%20for%20the%20solution%20of%20linear%20second%20order%20coupled%20differential%20equations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Parker,%20Gregory%20A.&rft.date=1980-08-15&rft.volume=73&rft.issue=4&rft.spage=1757&rft.epage=1764&rft.pages=1757-1764&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.440311&rft_dat=%3Ccrossref%3E10_1063_1_440311%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-29aecdcb3b3b261559d7de70e93ab936533cc10ac04f3fe41d7e825221d034a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true