Loading…
Generalized discrete variable approximation in quantum mechanics
The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, a...
Saved in:
Published in: | The Journal of chemical physics 1985-02, Vol.82 (3), p.1400-1409 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63 |
container_end_page | 1409 |
container_issue | 3 |
container_start_page | 1400 |
container_title | The Journal of chemical physics |
container_volume | 82 |
creator | LIGHT, J. C HAMILTON, I. P LILL, J. V |
description | The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed. |
doi_str_mv | 10.1063/1.448462 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_448462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9281798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</originalsourceid><addsrcrecordid>eNo9j8tKxDAYRoMoOI6Cj5CFCzcd_1yay04ZnFEYcKPrkuaCkTatSUfUp3ek4urbHD7OQeiSwIqAYDdkxbnigh6hBQGlKyk0HKMFACWVFiBO0VkpbwBAJOULdLv1yWfTxW_vsIvFZj95_GFyNG3nsRnHPHzG3kxxSDgm_L43adr3uPf21aRoyzk6CaYr_uJvl-hlc_-8fqh2T9vH9d2usozCVDmwlAtWu5bWkivhBNCWUuaDJrq1XHKrgiSqlkpZAYoz4kAFpYXwXDrBluh6_rV5KCX70Iz54JW_GgLNb3lDmrn8gF7N6GiKNV3IJtlY_nlNFZFasR_6R1ax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized discrete variable approximation in quantum mechanics</title><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</creator><creatorcontrib>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</creatorcontrib><description>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.448462</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; Physics</subject><ispartof>The Journal of chemical physics, 1985-02, Vol.82 (3), p.1400-1409</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</citedby><cites>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9281798$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIGHT, J. C</creatorcontrib><creatorcontrib>HAMILTON, I. P</creatorcontrib><creatorcontrib>LILL, J. V</creatorcontrib><title>Generalized discrete variable approximation in quantum mechanics</title><title>The Journal of chemical physics</title><description>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</description><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKxDAYRoMoOI6Cj5CFCzcd_1yay04ZnFEYcKPrkuaCkTatSUfUp3ek4urbHD7OQeiSwIqAYDdkxbnigh6hBQGlKyk0HKMFACWVFiBO0VkpbwBAJOULdLv1yWfTxW_vsIvFZj95_GFyNG3nsRnHPHzG3kxxSDgm_L43adr3uPf21aRoyzk6CaYr_uJvl-hlc_-8fqh2T9vH9d2usozCVDmwlAtWu5bWkivhBNCWUuaDJrq1XHKrgiSqlkpZAYoz4kAFpYXwXDrBluh6_rV5KCX70Iz54JW_GgLNb3lDmrn8gF7N6GiKNV3IJtlY_nlNFZFasR_6R1ax</recordid><startdate>19850201</startdate><enddate>19850201</enddate><creator>LIGHT, J. C</creator><creator>HAMILTON, I. P</creator><creator>LILL, J. V</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850201</creationdate><title>Generalized discrete variable approximation in quantum mechanics</title><author>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIGHT, J. C</creatorcontrib><creatorcontrib>HAMILTON, I. P</creatorcontrib><creatorcontrib>LILL, J. V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIGHT, J. C</au><au>HAMILTON, I. P</au><au>LILL, J. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized discrete variable approximation in quantum mechanics</atitle><jtitle>The Journal of chemical physics</jtitle><date>1985-02-01</date><risdate>1985</risdate><volume>82</volume><issue>3</issue><spage>1400</spage><epage>1409</epage><pages>1400-1409</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.448462</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 1985-02, Vol.82 (3), p.1400-1409 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_448462 |
source | AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Atomic and molecular physics Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) Electronic structure of atoms, molecules and their ions: theory Exact sciences and technology Physics |
title | Generalized discrete variable approximation in quantum mechanics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20discrete%20variable%20approximation%20in%20quantum%20mechanics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=LIGHT,%20J.%20C&rft.date=1985-02-01&rft.volume=82&rft.issue=3&rft.spage=1400&rft.epage=1409&rft.pages=1400-1409&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.448462&rft_dat=%3Cpascalfrancis_cross%3E9281798%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |