Loading…

Generalized discrete variable approximation in quantum mechanics

The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1985-02, Vol.82 (3), p.1400-1409
Main Authors: LIGHT, J. C, HAMILTON, I. P, LILL, J. V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63
cites cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63
container_end_page 1409
container_issue 3
container_start_page 1400
container_title The Journal of chemical physics
container_volume 82
creator LIGHT, J. C
HAMILTON, I. P
LILL, J. V
description The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.
doi_str_mv 10.1063/1.448462
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_448462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9281798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</originalsourceid><addsrcrecordid>eNo9j8tKxDAYRoMoOI6Cj5CFCzcd_1yay04ZnFEYcKPrkuaCkTatSUfUp3ek4urbHD7OQeiSwIqAYDdkxbnigh6hBQGlKyk0HKMFACWVFiBO0VkpbwBAJOULdLv1yWfTxW_vsIvFZj95_GFyNG3nsRnHPHzG3kxxSDgm_L43adr3uPf21aRoyzk6CaYr_uJvl-hlc_-8fqh2T9vH9d2usozCVDmwlAtWu5bWkivhBNCWUuaDJrq1XHKrgiSqlkpZAYoz4kAFpYXwXDrBluh6_rV5KCX70Iz54JW_GgLNb3lDmrn8gF7N6GiKNV3IJtlY_nlNFZFasR_6R1ax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized discrete variable approximation in quantum mechanics</title><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</creator><creatorcontrib>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</creatorcontrib><description>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.448462</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; Physics</subject><ispartof>The Journal of chemical physics, 1985-02, Vol.82 (3), p.1400-1409</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</citedby><cites>FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9281798$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIGHT, J. C</creatorcontrib><creatorcontrib>HAMILTON, I. P</creatorcontrib><creatorcontrib>LILL, J. V</creatorcontrib><title>Generalized discrete variable approximation in quantum mechanics</title><title>The Journal of chemical physics</title><description>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</description><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKxDAYRoMoOI6Cj5CFCzcd_1yay04ZnFEYcKPrkuaCkTatSUfUp3ek4urbHD7OQeiSwIqAYDdkxbnigh6hBQGlKyk0HKMFACWVFiBO0VkpbwBAJOULdLv1yWfTxW_vsIvFZj95_GFyNG3nsRnHPHzG3kxxSDgm_L43adr3uPf21aRoyzk6CaYr_uJvl-hlc_-8fqh2T9vH9d2usozCVDmwlAtWu5bWkivhBNCWUuaDJrq1XHKrgiSqlkpZAYoz4kAFpYXwXDrBluh6_rV5KCX70Iz54JW_GgLNb3lDmrn8gF7N6GiKNV3IJtlY_nlNFZFasR_6R1ax</recordid><startdate>19850201</startdate><enddate>19850201</enddate><creator>LIGHT, J. C</creator><creator>HAMILTON, I. P</creator><creator>LILL, J. V</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850201</creationdate><title>Generalized discrete variable approximation in quantum mechanics</title><author>LIGHT, J. C ; HAMILTON, I. P ; LILL, J. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIGHT, J. C</creatorcontrib><creatorcontrib>HAMILTON, I. P</creatorcontrib><creatorcontrib>LILL, J. V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIGHT, J. C</au><au>HAMILTON, I. P</au><au>LILL, J. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized discrete variable approximation in quantum mechanics</atitle><jtitle>The Journal of chemical physics</jtitle><date>1985-02-01</date><risdate>1985</risdate><volume>82</volume><issue>3</issue><spage>1400</spage><epage>1409</epage><pages>1400-1409</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The formal definition of the generalized discrete variable representation (DVR) for quantum mechanics and its connection to the usual variational basis representation (VBR) is given. Using the one dimensional Morse oscillator example, we compare the ‘‘Gaussian quadrature’’ DVR, more general DVR’s, and other ‘‘pointwise’’ representations such as the finite difference method and a Simpson’s rule quadrature. The DVR is shown to be accurate in itself, and an efficient representation for optimizing basis set parameters. Extensions to multidimensional problems are discussed.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.448462</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1985-02, Vol.82 (3), p.1400-1409
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_448462
source AIP_美国物理联合会现刊(与NSTL共建)
subjects Atomic and molecular physics
Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)
Electronic structure of atoms, molecules and their ions: theory
Exact sciences and technology
Physics
title Generalized discrete variable approximation in quantum mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20discrete%20variable%20approximation%20in%20quantum%20mechanics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=LIGHT,%20J.%20C&rft.date=1985-02-01&rft.volume=82&rft.issue=3&rft.spage=1400&rft.epage=1409&rft.pages=1400-1409&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.448462&rft_dat=%3Cpascalfrancis_cross%3E9281798%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-d0c24635db257486d602b223ef919bc474c8f7185788c608431d08f8966e47d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true