Loading…

A theoretical investigation of the UV spectrum of ethyl radical

A b initio multiconfiguration self-consistent field and configuration interaction calculations show that the ethyl radical when vertically excited from its ground state to the lowest 3p Rydberg state dissociates without a barrier to ground state methyl radical and 1B1 methylene, which accounts for t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1985-01, Vol.83 (8), p.3995-4000
Main Authors: BLOMBERG, M. R. A, LIU, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A b initio multiconfiguration self-consistent field and configuration interaction calculations show that the ethyl radical when vertically excited from its ground state to the lowest 3p Rydberg state dissociates without a barrier to ground state methyl radical and 1B1 methylene, which accounts for the continuous nature of the ethyl spectrum. It is also shown that the 3p Rydberg states of ethyl are lower in energy in the nonclassical (hydrogen bridged) equilibrium structure of the ethyl cation than in the classical ground state ethyl radical equilibrium structure or at their respective adiabatic dissociation limits. This suggests the equilibrium structures of the 3p Rydberg states are nonclassical.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.449113