Loading…
A theoretical investigation of the UV spectrum of ethyl radical
A b initio multiconfiguration self-consistent field and configuration interaction calculations show that the ethyl radical when vertically excited from its ground state to the lowest 3p Rydberg state dissociates without a barrier to ground state methyl radical and 1B1 methylene, which accounts for t...
Saved in:
Published in: | The Journal of chemical physics 1985-01, Vol.83 (8), p.3995-4000 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A b initio multiconfiguration self-consistent field and configuration interaction calculations show that the ethyl radical when vertically excited from its ground state to the lowest 3p Rydberg state dissociates without a barrier to ground state methyl radical and 1B1 methylene, which accounts for the continuous nature of the ethyl spectrum. It is also shown that the 3p Rydberg states of ethyl are lower in energy in the nonclassical (hydrogen bridged) equilibrium structure of the ethyl cation than in the classical ground state ethyl radical equilibrium structure or at their respective adiabatic dissociation limits. This suggests the equilibrium structures of the 3p Rydberg states are nonclassical. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.449113 |