Loading…

High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O

The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leadi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1987-05, Vol.86 (10), p.5540-5549
Main Authors: Marshall, Paul, Fontijn, Arthur, Melius, Carl F.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3
cites cdi_FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3
container_end_page 5549
container_issue 10
container_start_page 5540
container_title The Journal of chemical physics
container_volume 86
creator Marshall, Paul
Fontijn, Arthur
Melius, Carl F.
description The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N2+OH, from 390 to 1310 K is found to be given by k1(T)=5.5×10−14 exp(−2380 K/T)+7.3×10−10 exp(−9690 K/T) cm3 molecule−1 s−1; the accuracy is assessed as approximately 25% at the 2σ confidence level. Above 750 K, k1 closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k1 is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of
doi_str_mv 10.1063/1.452526
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_452526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_452526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3</originalsourceid><addsrcrecordid>eNotkDtPwzAYAC0EEqEg8RM8srj4ETvxWCqgSIUywBz58bkJInFlu0L99zzKdNINNxxC14zOGVXils1rySVXJ6hitNWkUZqeoopSzohWVJ2ji5w_KKWs4XWF-tWw7UmBcQfJlH0CvOtjia6HccglHbCZPL5bLMnza41z2fsBMo4Blx5wAuPKECdsoXwBTHib4n7yJBdTAK-wKXHMf4EXvrlEZ8F8Zrj65wy9P9y_LVdkvXl8Wi7WxAnFCnHBBagbLVzttOeMcS-sBf2jqaSN9BCkbaxorfBBAdPBSCtBKCM1hxbEDN0cuy7FnBOEbpeG0aRDx2j3e6hj3fGQ-AY_-1mO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O</title><source>American Institute of Physics (AIP) Publications</source><creator>Marshall, Paul ; Fontijn, Arthur ; Melius, Carl F.</creator><creatorcontrib>Marshall, Paul ; Fontijn, Arthur ; Melius, Carl F.</creatorcontrib><description>The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N2+OH, from 390 to 1310 K is found to be given by k1(T)=5.5×10−14 exp(−2380 K/T)+7.3×10−10 exp(−9690 K/T) cm3 molecule−1 s−1; the accuracy is assessed as approximately 25% at the 2σ confidence level. Above 750 K, k1 closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k1 is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of &lt;1×10−9 exp(−15800 K/T) cm3 molecule−1 s−1 is set for temperatures up to 2000 K.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.452526</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1987-05, Vol.86 (10), p.5540-5549</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3</citedby><cites>FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marshall, Paul</creatorcontrib><creatorcontrib>Fontijn, Arthur</creatorcontrib><creatorcontrib>Melius, Carl F.</creatorcontrib><title>High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O</title><title>The Journal of chemical physics</title><description>The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N2+OH, from 390 to 1310 K is found to be given by k1(T)=5.5×10−14 exp(−2380 K/T)+7.3×10−10 exp(−9690 K/T) cm3 molecule−1 s−1; the accuracy is assessed as approximately 25% at the 2σ confidence level. Above 750 K, k1 closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k1 is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of &lt;1×10−9 exp(−15800 K/T) cm3 molecule−1 s−1 is set for temperatures up to 2000 K.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYAC0EEqEg8RM8srj4ETvxWCqgSIUywBz58bkJInFlu0L99zzKdNINNxxC14zOGVXils1rySVXJ6hitNWkUZqeoopSzohWVJ2ji5w_KKWs4XWF-tWw7UmBcQfJlH0CvOtjia6HccglHbCZPL5bLMnza41z2fsBMo4Blx5wAuPKECdsoXwBTHib4n7yJBdTAK-wKXHMf4EXvrlEZ8F8Zrj65wy9P9y_LVdkvXl8Wi7WxAnFCnHBBagbLVzttOeMcS-sBf2jqaSN9BCkbaxorfBBAdPBSCtBKCM1hxbEDN0cuy7FnBOEbpeG0aRDx2j3e6hj3fGQ-AY_-1mO</recordid><startdate>19870515</startdate><enddate>19870515</enddate><creator>Marshall, Paul</creator><creator>Fontijn, Arthur</creator><creator>Melius, Carl F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870515</creationdate><title>High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O</title><author>Marshall, Paul ; Fontijn, Arthur ; Melius, Carl F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, Paul</creatorcontrib><creatorcontrib>Fontijn, Arthur</creatorcontrib><creatorcontrib>Melius, Carl F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, Paul</au><au>Fontijn, Arthur</au><au>Melius, Carl F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O</atitle><jtitle>The Journal of chemical physics</jtitle><date>1987-05-15</date><risdate>1987</risdate><volume>86</volume><issue>10</issue><spage>5540</spage><epage>5549</epage><pages>5540-5549</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The H+N2O reaction has been investigated using the high-temperature photochemistry (HTP) technique. H(1 2S) atoms were generated by flash photolysis of NH3 and monitored by time-resolved atomic resonance fluorescence with pulse counting. The bimolecular rate coefficient for H-atom consumption, leading essentially to N2+OH, from 390 to 1310 K is found to be given by k1(T)=5.5×10−14 exp(−2380 K/T)+7.3×10−10 exp(−9690 K/T) cm3 molecule−1 s−1; the accuracy is assessed as approximately 25% at the 2σ confidence level. Above 750 K, k1 closely follows the Arrhenius behavior of the second term alone. Distinct curvature is evident below 750 K. k1 is compared to theoretical BAC-MP4 predictions and good agreement is found for a model involving rearrangement of an HNNO intermediate coupled with tunneling through an Eckart potential barrier, which dominates at the lower temperatures. The branching ratio for the channel leading to NH+NO is discussed in the context of recent thermochemical information and a maximum rate coefficient of &lt;1×10−9 exp(−15800 K/T) cm3 molecule−1 s−1 is set for temperatures up to 2000 K.</abstract><doi>10.1063/1.452526</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1987-05, Vol.86 (10), p.5540-5549
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_452526
source American Institute of Physics (AIP) Publications
title High-temperature photochemistry and BAC-MP4 studies of the reaction between ground-state H atoms and N2O
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20photochemistry%20and%20BAC-MP4%20studies%20of%20the%20reaction%20between%20ground-state%20H%20atoms%20and%20N2O&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Marshall,%20Paul&rft.date=1987-05-15&rft.volume=86&rft.issue=10&rft.spage=5540&rft.epage=5549&rft.pages=5540-5549&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.452526&rft_dat=%3Ccrossref%3E10_1063_1_452526%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-cfcfe4793c4c9d2112d3bbe9fcf05075def5b7b38b3df6e19fa5b5e36a592e8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true