Loading…
Mass spectrometric evidence for icosahedral structure in large rare gas clusters: Ar, Kr, Xe
Clusters of argon, krypton, and xenon are grown in a free jet and ionized by electron impact. The size of these clusters, (Rg)+n, extends up to n≂1000. Individual cluster sizes are mass resolved up to n≂570 in the case of Ar+n. The well known, but puzzling differences in the size distributions of Kr...
Saved in:
Published in: | The Journal of chemical physics 1989-11, Vol.91 (10), p.5940-5952 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clusters of argon, krypton, and xenon are grown in a free jet and ionized by electron impact. The size of these clusters, (Rg)+n, extends up to n≂1000. Individual cluster sizes are mass resolved up to n≂570 in the case of Ar+n. The well known, but puzzling differences in the size distributions of Kr and Xe clusters disappear beyond n≂130, while those between Ar and Xe disappear beyond n≂220. The most pronounced ‘‘magic numbers’’ in the distributions of large cluster ions occur at n=147 (148 for Ar), 309, and 561, in striking agreement with the number of atoms required to build icosahedral clusters with 3, 4, and 5 complete coordination shells, respectively. Closure of the 6th icosahedral coordination shell is indicated by another strong intensity drop at n≂923 in the unresolved part of the spectra. Several additional intensity extrema are observed between major shell closures. A simple structural model, assuming an icosahedral core decorated by the additional atoms, accounts for these anomalies reasonably well up to n=561. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.457464 |