Loading…

Electron spin resonance studies of the methane radical cations (12,13CH+4, 12,13CDH+3, 12CD2H+2, 12CD3H+, 12CD+4) in solid neon matrices between 2.5 and 11 K: Analysis of tunneling

The radical cation of methane isolated in neon matrices exhibits highly unusual electron spin resonance (ESR) spectral features between 2.5 and 11 K. The anomaly has been clarified by invoking large amplitude tunneling motions of the hydrogens among several symmetrically equivalent Jahn–Teller disto...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 1995-09, Vol.103 (9), p.3377-3385
Main Authors: Knight, Lon B., King, Gina M., Petty, Jeffrey T., Matsushita, Michio, Momose, Takamasa, Shida, Tadamasa
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The radical cation of methane isolated in neon matrices exhibits highly unusual electron spin resonance (ESR) spectral features between 2.5 and 11 K. The anomaly has been clarified by invoking large amplitude tunneling motions of the hydrogens among several symmetrically equivalent Jahn–Teller distorted structures. The effect of the tunneling motions upon the ESR spectrum was investigated by an analysis scheme based upon permutation–inversion group theory. All the deuterium substituted cations, i.e., CDH+3, CD2H+2, CD3H+, and CD+4 were also studied. The hyperfine coupling constant of 13C was obtained from the study of 13CDH+3 and 13CH+4. Several independent generation methods were employed during the course of these methane cation studies, including photoionization, electron bombardment, x-irradiation, and a pulsed laser surface ionization technique.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.470222