Loading…
Wavefront corrected light sheet microscopy in turbid media
Light sheet microscopy is a powerful method for three-dimensional imaging of large biological specimens. However, its imaging ability is greatly diminished by sample scattering and aberrations. Optical clearing, Bessel light modes, and background rejection have been employed in attempts to circumven...
Saved in:
Published in: | Applied physics letters 2012-05, Vol.100 (19), p.191108-191108-5 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Light sheet microscopy is a powerful method for three-dimensional imaging of large biological specimens. However, its imaging ability is greatly diminished by sample scattering and aberrations. Optical clearing, Bessel light modes, and background rejection have been employed in attempts to circumvent these deleterious effects. We present an
in situ
wavefront correction that offers a major advance by creating an "optimal" light sheet within a turbid sample. Crucially, we show that no tissue clearing or specialized sample preparation is required, and clear improvements in image quality and depth resolution are demonstrated both in Gaussian and Bessel beam-based light sheet modalities. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4710527 |