Loading…
Theory of coherent Raman scattering with quasi-cw noisy light for a general line shape function
The theory of electronically nonresonant coherent Raman scattering (CRS) with quasi-cw noisy light (I(2) CRS) is developed for a general material response. The (Raman) resonant–resonant and resonant–nonresonant hyperpolarizability contributions to the I(2) CRS signal are interferometrically separabl...
Saved in:
Published in: | The Journal of chemical physics 1997-11, Vol.107 (18), p.7127-7137 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The theory of electronically nonresonant coherent Raman scattering (CRS) with quasi-cw noisy light (I(2) CRS) is developed for a general material response. The (Raman) resonant–resonant and resonant–nonresonant hyperpolarizability contributions to the I(2) CRS signal are interferometrically separable. It is found that, in general, the interferometric decay of each of these terms exposes the Raman line shape function in a different manner. Only for a Lorentzian line is their decay identical. Thus, in principle, I(2) CRS provides a new way to explore the line shape function that is analytically distinct from frequency domain and time domain methods. By way of illustration, the general theory is applied to three common line shapes: Lorentzian (as in the original I(2) CRS theory), Gaussian, and Voigt. The results are shown to be consistent with the principles of factorized time correlation diagram analysis. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.474954 |